City of Somerville, Massachusetts

 Department of Procurement and Contracting Services KATJANA BALLANTYNEMAYOR

To: Bidders of REBID IFB 24-43 Installation of Three (3) Standalone Portland Loo Prefabricated Toilets

From: Andrea Caruth, Deputy Chief Procurement Officer

Date: March 21, 2024 (Updated to include bid price form referenced in response to question \#1)
Re: Responses to Requests for information

Addendum No. 1 to REBID IFB 24-43

This addendum responds to requests for information.
This addendum adds the structural drawings and structural calculations noted on page 4.
This addendum updates the bid price form.
This addendum updates that the School Street dropbox is no longer available.

Please note: the City will receive submissions by mail, hand delivery, and BidExpress.com.
** Failure to acknowledge this addendum may result in bid disqualification.**
NAME OF COMPANY / INDIVIDUAL: \qquad

ADDRESS: \qquad

CITY/STATE/ZIP: \qquad

TELEPHONE/FAX/EMAIL: \qquad

SIGNATURE OF AUTHORIZED INDIVIDUAL: \qquad

ACKNOWLEDGEMENT OF ADDENDA:

Addendum \#1 \qquad \#2 \qquad \#3 \qquad \#4 \qquad

Question	Answer
1. Please provide the unit price bid form with estimated quantities of work listed within the technical specifications shown on pages 113 to page 153 of the IFB document.	See attached document titled "Bid Form Portland Loo Installation."
2. Section 1.2 states contract completion date as $04 / 03 / 25$, section 2.2 appears to incorrectly state date of substantial completion as 06/30/2024 and final completion of 08/31/2024. Can you please revise?	We regularly delay estimated contract completion to the spring following final completion to accommodate unexpected delays that are impacted by winter conditions. If the extra time is unneeded, we would end the contract at the final completion date.
3. Page 10 of 159 states that "The Contractor will be responsible for obtaining EVERSOURCE work orders and for all costs and fees associated with EVERSOURCE." a. We have experienced very long lead times securing Eversource Work Orders for electrical connections and have no way to determine prior to bid how much time will be required. This lengthy process would make a substantial completion date of 06/30/2024 and final completion date of 08/31/2024 unattainable. As these units will be owned \& managed by the City, we would recommend the City begin the process of applying for the Work Orders independently of the contractor and prior to the start of construction.	We have a very collaborative relationship with Eversource, which usually results in reasonable work order timing. In addition, we have already notified Eversource that we will be executing this work over the summer. We do not expect any substantial delays that would push us beyond the final completion date. We expect the selected contractor to apply for the Eversource Work Order promptly upon notice to proceed.
4. If the work order process cannot be stated prior to construction, would the City consider creating an allowance item to cover all permit, connection \& engineering fees Eversource will be assessing the project as they cannot be determined	An allowance item cannot be provided. Our experience is that there is sufficient time between Est Contract Commencement and Substantial Completion to accomplish the Eversource connection. If this work exceeds the Est Contract Completion date, we would consider an addendum for additional time and effort.

prior to bid.	
5. "Key Project Information" and "Project Background" tables both list liquidated damages as $\$ 250.00$ per day, page 117 of 159 of project specifications shows a different amount, at $\$ 4,000.00$ per week. a. Can you please clarify which amount is correct? b. Can you please clarify when liquidated damages listed will be assessed onto the contractor?	The $\$ 4000$ per week is correct. Liquidated damages would result from the failure to install the public loos, sidewalks and other ancillary items within 90 days of receipt of public loos; it does not include final operations due to any delays in utility connections.
6. Has the City of Somerville prepurchased the portable structures? a. If so, can you please provide an estimated delivery date of the structures to the project site? b. Can you please clarify how the units will be shipped and what equipment will be needed to unload?	Yes, the Portland Loo's have been prepurchased and have been ordered. Please refer to Project Specification Item 1.1. The selected contractor may choose their yard for delivery and storage. We anticipate delivery during the month of May, but we have not received confirmation from the manufacturer. The units are each shipped on a pallet and can be unloaded with a forklift. The units are shipped wrapped in a thick vinyl wrap, and weighs just over 6,000 lbs.
7. We were unable to access the designer's website and gather any information about the Portable Loo units, could you please provide complete set of installation instructions, shop drawings and specifications so we can review prior to bid?	See attached installation instructions and structural drawings. A video demonstrating installation can be found here: https://vimeo.com/141186536
8. Utility plans show electrical conduit running from the pre-fabricated structures up to existing buildings, has the City coordinated getting power and making final connections inside these existing structures? a. If the electrical connections have not been finalized, would the City consider creating an allowance item for this work?	Design plans for electrical connections reflect proposed locations to existing utility poles. Final location will require coordination with provider. No.

9. Utility plans show proposed invert elevations of sewer connections but do not show any local rim elevations, can you please provide rim elevations close to the connection point so we can determine depth of proposed sewer connections?	a. Davis Square - Approx. Depth: 8^{\prime} Local Rim 29.3' Invert 21.3' b. Union Square - Approx. Depth: 8.5' Local Rim 17.6' Invert 9' (contractor will be installing the main and terminal manhole at this location. c. 165 Broadway - Approx. Depth: 8^{\prime} (estimated from downstream manhole internal photo)
10. Please provide foundation details and specifications for the pre-fabricated structures.	See Sheet S3.0 of the attached document titled "Portland Loo Structural Drawings."
11. IFB Specifications include descriptions for item 201.5 catch basin - municipal standard and includes a detail for an infiltration basin, we see no proposed catch basins or infiltration basins on the utility plans provided, can you clarify if we will be installing any of these items as part of the project?	There is an infiltrating catch basin to be installed at the 165 Broadway Street location, shown on Sheet E of the design plans.
12. IFB Specifications include descriptions for item 202.1 manhole - municipal standard, we see no proposed manholes on the utility plans provided, can you clarify if we will be installing any of these items as part of the project?	The Union Square installation location includes extending an $8^{\prime \prime}$ PVC sewer main from an existing manhole 80^{\prime}, and installing a terminal manhole, to which the Portland Loo will have its sanitary service connected to.
13. IFB Specifications include descriptions for item 707.96 install pre-fabricated steel sign, and shows a detail sheet from "sign bracket store". Can you please clarify pre-fabricated sign model number, post and sign material type, post and sign material colors, sign wording, fonts and colors so we are able to determine sign cost.	It is the intention to replace the existing sign in the Union Square location. Item 707.96 shows the item "Channel Post and Panel" from the Sign Bracket Store (Model number 368PP-30C-96-BF-ARC). A similar sign and post, with prior review and approval from the project engineer may also be used.

BID PRICING PAGE
2024 PORTLAND LOO INSTALLATION PROJECT, SOMERVILLE, MA

Item \#	Estimate Quantity	Unit	Item Descriptionwith Unit Bid Price written in words	Unit Price		Amount	
				Dollars	Cents	Dollars	Cents
1.100	12	Week	RECEIVE \& STORE PORTLAND LOO				
			Unit Price in words:				
1.200	3	EACH	INSTALL 12'6" CONCRETE FOUNDATION				
			Unit Price in words:				
1.	3	EACH	INSTALL PORTLAND LOO				
			Unit Price in words:				
103.	4	EACH	TREE PROTECTION				
			Unit Price in words:				
120.	75	CY	UNCLASSIFIED EXCAVATION				
			Unit Price in words:				
141.1	75	CY	TEST PIT FOR EXPLORATION				
			Unit Price in words:				
142.0	75	CY	CLASS B TRENCH EXCAVATION				
			Unit Price in words:				
151.	30	CY	GRAVEL BORROW				
			Unit Price in words:				
201.	157	LF	PLASTIC (PVC) PIPE				
			Unit Price in words:				
202.	1	EACH	CATCH BASIN (INC. INFILTRATING BASIN)				
			Unit Price in words:				
202.1	1	EACH	SEWER MANHOLE				
			Unit Price in words:				
220.00	6	EACH	STRUCTURE ADJUST				
			Unit Price in words:				

Item \#	Estimate Quantity	Unit	Item Descriptionwith Unit Bid Price written in words	Unit Price		Amount	
				Dollars	Cents	Dollars	Cents
358.20	9	EACH	GATE BOX ADJUSTED (SIDEWALK)				
			Unit Price in words:				
360.	67	LF	COPPER TUBING (WATER SERVICE)				
			Unit Price in words:				
415.1	133	SY	PAVEMENT STANDARD MILLING				
			Unit Price in words:				
460.0	38	TON	HOT MIX ASPHALT FOR LOCAL STREETS				
			Unit Price in words:				
482.3	40	LF	SAWCUTTING ASPHALT PAVEMENT				
			Unit Price in words:				
504.0	45	LF	GRANITE CURB TYPE VA4 - STRAIGHT				
			Unit Price in words:				
580.0	135	LF	GRANITE CURB REMOVED \& RESET				
			Unit Price in words:				
701.0	165	SY	CEMENT CONCRETE SIDEWALK				
			Unit Price in words:				
701.2	7	SY	CEMENT CONCRETE PEDESTRIAN CURB RAMP				
			Unit Price in words:				
701.50	2	EACH	DETECTABLE WARNING PANEL				
			Unit Price in words:				
707.15	2	EACH	REMOVE \& RESET PARK BENCH				
			Unit Price in words:				
707.96	1	EACH	INSTALL PREFABRICATED STEEL SIGN				
			Unit Price in words:				
734.00	5	EACH	SIGN POST REMOVE \& RESET				
			Unit Price in words:				
751.00	4	CY	LOAM BORROW				
			Unit Price in words:				
				Am			

Item \#	Estimate Quantity	Unit	Item Descriptionwith Unit Bid Price written in words	Unit Price		Amount	
				Dollars	Cents	Dollars	Cents
765.00	15	SY	SEEDING				
			Unit Price in words:				
854.03	70	LF	4" TEMPORARY PAVEMENT MARKINGS (REMOVEABLE TAPE)				

BID SUMMARY			
		Amount	
		Dollars	Cents
	Subtotal Amount from Page 1		
	Subtotal Amount from Page 2		
	Subtotal Amount from Page 3		
	BID TOTAL		

Company Name: \qquad
Signature: \qquad
Signature Name \& Title: \qquad Fax \#
Date: \qquad

THE PORTLAND LOO

377 SUMMER ST. SOMMERVILLE, MA 02144
 90 UNION SQUARE SOMMERVILLE, MA 02143 165 BTOADWAY SOMMERVILLE, MA 02145

DESIGN INFORMATION

1. 9th ED MASSACHUSETTS STATE BULLDING CODE
2. LIVE LOAD $=20$ PSF
3. WIND LOAD:

Vult $=127 \mathrm{MPH}$
Vasd $=98.4 \mathrm{MPH}$
$\mathrm{lw}=1.0$
Exposure = C
Risk Category $=11$
Internal Pressure $=+1-0.18$
4. SEISMIC LOAD:
le $=1.0$
$\mathrm{Ss}=0.28$
$\mathrm{~S} 1=0.07$
$\mathrm{Sds}=0.294$
Sd1 $=0.112$
Site Class D
Site Class
SDC =
Seismic Base Shear $=0.19 \mathrm{kip}$
Light Frame (Cold Formed Steel) Wall w/ steel sheets Analysis $=$ Equivalent Lateral Force
$\mathrm{R}=7.0$
$\mathrm{Cs}=0.04$
5. $\mathrm{Cs}=0.042$
$\mathrm{Pg}=40 \mathrm{psf}$
$\mathrm{ls}=1.0$
$\mathrm{Ct}=1.0$
$\mathrm{Ce}=1$
$\mathrm{Pf}=30 \mathrm{psf}$
6. NET ALLOWABLE SOIL BEARING PRESSURE: 1500 PSE $\mathrm{F}^{\mathrm{F}} \mathrm{C}=4000 \mathrm{PSI}$
7. CONTRACTOR TO VERIFY DESIGN PARAMEIERS SHOWN WITH ACTUAL SITE CONDITIONS AND ENSURE ACTUAL SITE PARAMETERS DO NOT EXCEED DESIGN

GENERAL NOTES

1. WEIGHT: $6,013 \mathrm{lbs}$
2. SQUARE FOOTAGE: 51.5
3. ALL STRUCTURAL STEEL TO BE FABRICATED AND ERECTED IN ACCORDANCE WITH AISC MANUAL 14TH EDITION \& A.W.S. ALL PANELS, LOUVERS, AND ROOF TO BE 304 STAINLESS STEEL Fy $=30 \mathrm{ks}$ STRUCTURAL TUBING ASTM 500 GR B
4. STRUCTURAL TUBING ASTM 500 GR. B
5. ALL WELDING TO BE DONE BY CERTIFIED WELDERS. WELD FILLER EIFCTRODE MATERIA TO BE 70 ksi LOW HYDROGEN
6. ALL EXPOSED BOLTS AND SCREWS TO BE TAMPER RESISTANT FOR HEX PIN BITS.
7. RIVET NUTS TO BE C.F.T. SERIES AND STAINLESS STEEL 302
8. ALL MATERIALS TO BE SAND BLASTED AND POWDER COATED
9. ALL STRUCTURES TO BE FABRICATED OFF SITE SHALL BE DONE IN SHOPS OR FABRICATORS LICENSED OR APPROVED BY THE BULLDING AND ENGINEERING DIVISION OF THE CITY FOR WHICH THE INSTALLATION WILL OCCUR
10. NO SPECIAL INSPECTION NEEDED

SHEET INDEX:

COVER SHEET

A1.0 FLOOR PLAN
A2.0 EXTERIOR ELEVATIONS FRONT \& RIGHT SIDE EXTERIOR ELEVATIONS FRONT \& RIGHT SIDE
A4.0 ROOF LAYOUT
A5.0 INTERIOR SECTION VIEW
A6.0 INTERIOR SECTION VIEWS
S1.0 COLUMN AND BEAM LAYOUT
S2.0 FRONT DOOR
S3.0
P1.0
P1.0
P2.0
1.0 ELECTRICAL SCHEMATIC

Digitally signed by Trevor G.
Wickie
Date: 2023.12.20 11:07:23-06'00'

SECTION A-A

GENERAL NOTES:

1. Provide all materials and perform all work according to the current edition of the Specifications of the Authority Having Jurisdiction.
2. All concrete shall be Structural Class 4000 . $\mathrm{FC}=4000$. $\mathrm{F}^{\prime} \mathrm{c}=4000 \mathrm{psi}$
3. All reinforcing steel shall conform to ASTM A706 or A615 Grade 60.
4. Place bars 3 inches clear of the nearest face of concrete unless shown otherwise.
5. Concrete footing may be poured integrally with 4' sidewalk, providing a deep cut tool joint is located around perimeter of footing.
6. Stanchions section "A-A" / A1.0 to be fastened to the concrete using $1 / 2^{\prime \prime}$ dia. Titan HD (4" Embed) The Loos columns to be fastened to stanchions.
7. Location of anchor bolts to be located and drilled using template provided before installation by Madden Fabrication.
8. Refer to civil plans for Grade/Slope and location of floor drains.

Larson

Enginoering hac

1	11/14/23 INITIAL ISSUE		$\begin{array}{\|l\|} \hline A Y K \\ \hline A Y K \\ \hline \end{array}$		$M \triangle D E D$	SOMMERVILLE, MA			
2	12/19/23	REVISED PER REDLINE							
					FABRISATMN	FOUN	DATION \&	ANCHOR B	Locations
						NAME	DATE	SERRILT NO.	ORW. No.
REV	DATE	DESCRPTITON	DRN	APPD		Evan	0318812022		S3.0

MADDEN

Sommerville Loo

Sommerville, MA

Structural Calculations

Book 1 of 1
Calculation Release \#1

Prepared for
Madden Fabrication
Portland, Oregon

Larson Engineering, Inc.
Naperville, Illinois
Project Number 21230893.000

Larson Engineering, Inc. 1488 Bond Street, Suite 100 Naperville, IL 60563-6503
630.357.0540 Fax: 630.357.0164
www.larsonengr.com

Portland Loo - Seatac Seatac, WA

Sheet No.

Design Criteria
$101-102$
Load Determination 201 - 209
Calculations $301-339$

Larson

Design Criteria

Design Criteria

Project Information:

Project: Sommerville Loo
Project Location: Sommerville, MA
Project Number: 21230893.000

Load Criteria

1. Structural calculations for Madden Fabrication prototype drawings dated 11/14/2023.
2. Structural Loads per 9th Ed Massachusetts State Building Code

Structural Steel

1. Square and rectangular steel tubes shall meet the requirements of ASTM A500 , Grade $\mathrm{B},\left(\mathrm{F}_{\mathrm{y}}=46 \mathrm{ksi}, \mathrm{F}_{\mathrm{u}}=58 \mathrm{ksi}\right)$
2. Steel members are designed per the "Manual of Steel Construction, Allowable Stress Design", Fifteenth Edition

Stainless Steel

1. Stainless steel alloy designation for plates, all shapes and bars shall be 304 or 316 as shown in drawings and shall meet the requirements of ASTM A-276 (F_{y} $=30 \mathrm{ksi}, \mathrm{F}_{\mathrm{u}}=75 \mathrm{ksi}$).
2. Structural stainless steel members are designed per AISC Design Guide 27, "Structural Stainless Steel."

Concrete

1. Cast-in-place concrete strength is assumed to be $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=4,000 \mathrm{psi}$, normal weight.

Larson

Fasteners, Welds \& Anchors

1. Fasteners exposed to weather shall be stainless steel, alloy groups 1, 2, OR 3 (300 Series Only, Fy $=30 \mathrm{ksi}, \mathrm{Fu}=75 \mathrm{ksi}$).
2. Stainless Steel welding electrode to be minimum E70XX low hydrogen for Grade 50 steel and E308-XX for A304 \& A316 stainless steel.
3. All welding shall be by certified welders and shall conform to the latest "Structural Welding Code", AWS D1.1 and meet AISC minimum requirements for weld size.
4. Threaded concrete bolts shall be Simpson Titen HD anchors having diameter and embedment as called for in the calculations. Install per manufacturer's recommendations.
5. Substitution requests for alternate products must be approved in writing by the engineer prior to use. Contractor shall provide product/technical information demonstrating that the substituted product is capable of achieving the performance values of the specified product including an icc-es report showing compliance with the relevant building code, seismic use, load resistance, installation category, in-service temperature, installation temperature, etc.

Disclaimers

1. This calculation package is for the final design and installed structural performance of the prefabricated building system. Larson Engineering is not responsible for manufacturing, the installation process, plumbing, electrical, or mechanical design or performance.
2. The following calculation package represents Larson Engineering's interpretation of the design intent of the shop drawings. Larson Engineering is not responsible for verification of dimensions, material take-offs, installation and coordination with other building trades. If as built conditions differ from the conditions shown in this calculation package, Madden Fabrication must bring these differences to the attention of Larson Engineering so that the as built conditions can be structurally verified.

Larson Engineering, Inc. 1488 Bond Street, Suite 100 Naperville, IL 60563-6503
630.357.0540 Fax: 630.357.0164
www.larsonengr.com

Load Determination

 phone: 630-357-0504JOB No. 21230893.000 SHEET NO.
JOB No. 21230893.000 SHEET NO.
CALCULATED BY SRS
DATE 11/29/23
CHECKED BY
DATE

STRUCTURAL CALCULATIONS

FOR

Portland Loo -Somerville

Code Search

Code: International Building Code 2015

Occupancy:

Occupancy Group =
B Business

Risk Category \& Importance Factors:

Risk Category $=$	I
Wind factor $=$	1.00
Snow factor $=$	1.00
Seismic factor $=$	1.00

Type of Construction:
Fire Rating:

$$
\begin{array}{ll}
\text { Roof }= & 0.0 \mathrm{hr} \\
\text { Floor }= & 0.0 \mathrm{hr}
\end{array}
$$

Building Geometry:

Roof angle (θ)	$0.00 / 12$	0.0 deg
Building length (L)	10.6 ft	
Least width (B)	6.3 ft	
Mean Roof Ht (h)	8.8 ft	
Parapet ht above grd	8.8 ft	
Minimum parapet ht	0.0 ft	

Live Loads:

```
Roof }0\mathrm{ to 200 sf: 20 psf
    200 to 600 sf: 24-0.02Area, but not less than 12 psf
        over 600 sf: 12 psf
```

Floor:
$\begin{array}{lr}\text { Typical Floor } & 0 \mathrm{psf} \\ \text { Partitions } & \text { N/A }\end{array}$

1488 Bond Street, Suite 100
Naperville, IL 60563
job no. 21230893.000 SHEET NO.
phone: 630-357-0504

DATE $\quad 11 / 29 / 23$ CHECKED BY

DATE \qquad

Wind Loads:

Ultimate Wind Speed Nominal Wind Speed Risk Category Exposure Category Enclosure Classif. Internal pressure
Directionality (Kd)

$$
\text { Kh case } 1
$$

Kh case 2
Type of roof

ASCE 7-10
127 mph 98.4 mph I
C
Enclosed Building +/-0.18 0.85 0.849 0.849

Monoslope

Topographic Factor (Kzt)	
Topography	Flat
Hill Height (H)	0.0 ft
Half Hill Length (Lh)	0.0 ft
Actual H/Lh	0.00
Use H/Lh	0.00
Modified Lh	0.0 ft
From top of crest: $\mathrm{x}=$	0.0 ft
Bldg up/down wind?	downwind

$\mathrm{H}<15 \mathrm{ft}$;exp C $\therefore \mathrm{Kzt}=1.0$

Gust Effect	Factor
$\mathrm{h}=$	8.8 ft
$\mathrm{B}=$	6.3 ft
$\mathrm{lz}(0.6 \mathrm{~h})=$	15.0 ft

Flexible structure if natural frequency $<1 \mathrm{~Hz}$ ($\mathrm{T}>1$ second). However, if building $\mathrm{h} / \mathrm{B}<4$ then probably rigid structure (rule of thumb). $h / B=1.39 \quad$ Therefore, probably rigid structure
$\mathbf{G}=\quad 0.85$ Using rigid structure default
Flexible or Dynamically Sensitive Structure
Natural Frequency $\left(\eta_{1}\right)=0.0 \mathrm{~Hz}$
Damping ratio $(\beta)=0$
$/ b=\quad 0.65$
$/ \alpha=\quad 0.15$
$\mathrm{Vz}=\quad 107.2$
$\mathrm{N}_{1}=0.00$
$R_{n}=0.000$
$R_{h}=28.282 \quad \eta=0.000 \quad h=8.8 f t$
$R_{B}=28.282 \quad \eta=0.000$
$R_{L}=28.282 \quad \eta=0.000$
$g_{R}=0.000$
$R=0.000$
$G=0.000$
JOB TITLE Portland Loo -Somerville

JOB No.	
CALCULATED BY	
CHECKED BY	
SRS	SHEET NO.

Test for Enclosed Building: A building that does not qualify as open or partially enclosed.

Test for Open Building: All walls are at least 80% open.
 $\mathrm{Ao} \geq 0.8 \mathrm{Ag}$

Test for Partially Enclosed Building:

	Input
Ao	100000.0
Ag	0.0
Aoi	0.0
Agi	0.0

	Test	
Ao ≥ 1.1 Aoi	YES	
Ao > 4' or 0.01 Ag	YES	
Aoi / Agi ≤ 0.20	NO	Building is NOT

ERROR: Ag must be greater than Ao
Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following:
Ao ≥ 1.1 Aoi
Ao $>$ smaller of 4^{\prime} or 0.01 Ag
Aoi / Agi ≤ 0.20
Where:
$A o=$ the total area of openings in a wall that receives positive external pressure.
$\mathrm{Ag}=$ the gross area of that wall in which Ao is identified.
Aoi $=$ the sum of the areas of openings in the building envelope (walls and roof) not including Ao.
Agi = the sum of the gross surface areas of the building envelope (walls and roof) not including Ag.

Reduction Factor for large volume partially enclosed buildings (Ri):

If the partially enclosed building contains a single room that is unpartitioned, the internal pressure coefficient may be multiplied by the reduction factor Ri.

Total area of all wall \& roof openings (Aog): 0 sf
Unpartitioned internal volume (Vi): 0 cf
$\mathrm{Ri}=\quad 1.00$

Altitude adjustment to constant 0.00256 (caution - see code) :

| Altitude $=$ | 0 feet | Average Air Density $=0.0765 \mathrm{lbm} / \mathrm{ft}^{3}$ |
| ---: | ---: | ---: | ---: |
| Constant $=$ | 0.00256 | |

Job no. 21230893.000 SHEET NO.
Calculated by SRS DATE
DATE 11/29/23
CHECKED BY
DATE

Seismic Loads:

IBC 2015

Risk Category :	I
Importance Factor (I) :	1.00
Site Class :	D
Ss $(0.2 \mathrm{sec})=$	$28.00 \% \mathrm{~g}$
S1 $(1.0 \mathrm{sec})=$	$7.00 \% \mathrm{~g}$

$\mathrm{Fa}=$	1.576	$\mathrm{Sms}=$	0.441	$\mathrm{~S}_{\mathrm{DS}}=$	0.294	Design Category $=$
$\mathrm{Fv}=$	2.400	$\mathrm{Sm1}=$	0.168	$S_{D 1}=$	0.112	Design Category $=$

Seismic Design Category = D
Number of Stories 1
Structure Type: Light Frame
Horizontal Struct Irregularities:No plan Irregularity
Vertical Structural Irregularities:No vertical Irregularity
Flexible Diaphragms: Yes
Building System: Building Frame Systems
Seismic resisting system: Light frame (cold-formed steel) walls with wood panels or steel sheets
System Structural Height Limit: 65 ft
Actual Structural Height (hn) $=8.8 \mathrm{ft}$
See ASCE7 Section 12.2.5 for exceptions and other system limitatior

DESIGN COEFFICIENTS AND FACTORS

Response Modification Coefficient $(\mathrm{R}):$	7
Over-Strength Factor $(\Omega \mathrm{O})=$	2
Deflection Amplification Factor $(\mathrm{Cd}):$	4.5
$\mathrm{~S}_{\mathrm{DS}}=$	0.294
$\mathrm{~S}_{\mathrm{D} 1}=$	0.112

Seismic Load Effect $(E)=\rho Q_{E}+/-0.2 S_{D S} D \quad=\rho Q_{E}+/-0.059 D \quad Q_{E}=$ horizontal seismic forc
Special Seismic Load Effect (Em) : $\Omega 0 Q_{E}+/-0.2 S_{D S} D \quad=2.0 Q_{E}+/-0.059 D \quad D=$ dead loac

PERMITTED ANALYTICAL PROCEDURES

Simplified Analysis - Use Equivalent Lateral Force Analysi

Equivalent Lateral-Force Analysis - Permittec
Building period coef. $\left(\mathrm{C}_{\mathrm{T}}\right)=0.020$
Approx fundamental period $(\mathrm{Ta})=\quad \mathrm{C}_{\top} \mathrm{h}_{\mathrm{n}}{ }^{\mathrm{x}}=\quad 0.102 \mathrm{sec} \quad \mathrm{x}=0.75 \quad$ Tmax $=\mathrm{CuTa}=0.171$
User calculated fundamental period $(T) \quad 0$ sec Use $T=0.102$
long Period Transition Period (TL)
Seismic response coef. (Cs)
need not exceed Cs $=\quad$ Sd1 $I / R T=\quad 0.157$
but not less than $\mathrm{Cs}=0.044 \mathrm{Sds}=0.013$
USE Cs =
Design Base Shear V = 0.042W

Model \& Seismic Response Analysis

- Permitted (see code for procedure

ALLOWABLE STORY DRIFT

Structure Type:
All other structures
Allowable story drift $=0.020 \mathrm{hsx} \quad$ where hsx is the story height below level

Larson Engineering, Inc. 1488 Bond Street, Suite 100 Naperville, IL 60563-6503
630.357.0540 Fax: 630.357.0164
www.larsonengr.com

E Larson

Calculations

DESIGN CRITERIA

Code:
Roof Minimum Load:
Snow Load:
Ground Snow Load:
Importance Factor:
Wind Loads:
Ultimate Wind Speed:
Exposure Category:

Earthquake Load:
$\mathrm{S}_{\mathrm{S}}:=0.28 \quad \mathrm{~S}_{1}:=0.07$
Occupancy Category: Occupancy := "I"
Seismic Design Category:
Site Class:
Structural System:

Importance Factor:
Redundancy Factor:
Allowable Soil Bearing Pressure:

Material Reference Design Standards

Steel:
Concrete:

9th Ed Massachusetts State Building Code
LL := 30psf
$\mathrm{pg}:=40 \mathrm{psf}$
$\mathrm{I}_{\mathrm{s}}:=1.00$
$\mathrm{V}:=127 \mathrm{mph}$
Exposure := "C"

SDC := "D"
SiteClass:= "D"
Light frame walls sheathed with wood structural panels rated for shear resistance or steel sheets

Req $:=7.0$
Equivalent Lateral Force Analysis
$\mathrm{I}_{\mathrm{e}}:=1.00$
$\rho:=1.3$

Qallow := 1500 psf

AISC Steel Construction Manual - 13th Edition
ACI 318-14 Building Code Requirements for Structural Concrete

GRAVITY LOADS

Building Geometry

Greater Building Length

Least Building Width:
$\mathrm{L}:=10 . \mathrm{ft}+7.5 \mathrm{in}$

Mean Roof Height

Loading
Roof Loads
3/16" Steel Plate:
Steel Framing:
MEP Components:
Miscellaneous:
$\mathrm{H}:=8 \mathrm{ft}+8.8125 \mathrm{in}$

Roof Dead Load:
RDL: $=\sum \mathrm{rdl}=23 . \mathrm{psf}$
Roof Live Load:
RLL:= 20psf

Snow Load
Exposure Factor (Table 7-2):
$\mathrm{Ce}_{\mathrm{e}}:=1.0$
Thermal Factor (Table 7-3):
$c_{t}:=1.0$
Sloped Factor (Figure 7-2):
Flat Roof Snow Load (Eq. 7.3-1):
$C_{s}:=1.0$
RSL_: $=\left\lvert\, \begin{aligned} & \max \left(0.7 \cdot \mathrm{C}_{\mathrm{e}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{I}_{s} \cdot \mathrm{p}_{\mathrm{g}}, \mathrm{I}_{S_{s}} \cdot \mathrm{pg}_{\mathrm{g}}\right) \text { if } \mathrm{pg}_{\mathrm{g}} \leq 20 \mathrm{psf}=30 \cdot \mathrm{psf} \\ & \max (30 \mathrm{psf}) \text { if } \mathrm{pg}_{\mathrm{g}}>20 \mathrm{psf}\end{aligned}\right.$
RSL := RSL_ = 30.psf
Exterior Wall Load
3/16" Steel Plate:
Louvers:
Steel Framing:
MEP Components:
$\mathrm{wdl}_{1}:=11 \cdot \mathrm{psf}$
$\mathrm{wdl}_{2}:=2 \cdot \mathrm{psf} \quad *_{\text {in }}$ addition to steel plate
$\mathrm{wdl}_{3}:=6 \cdot \mathrm{psf}$
$\mathrm{wdl}_{4}:=4$.psf
Wall Dead Load:
WDL := $\sum \mathrm{wdl}=23 \cdot \mathrm{psf}$
SUBJECT: Portland Loo - Somerville Structural Calculations SHEET NO. 33

LATERAL LOADS

Wind Loads

End Zone Wall Loading:	Pwallend :=
Interior Zone Wall Loading:	$\mathrm{P}_{\text {wallint }}:=$
Positive Wall Loading:	Pwallpos :=
End Zone Roof Loading:	Proofend: $=$
Interior Zone Roof Loading:	Proofint :=
Positive Roof Loading:	Proofpos:=
End Zone Wall Loading (10ft2):	Pcwallend :=
End Zone Roof Loading (16ft2):	Pcroofend :
Positive Roof Loading (16tt ${ }^{2}$:	Pcroofpos:
	*multiply va
Edge Strip Dimemsion:	$\mathrm{a}:=3 \mathrm{ft}$
End Zone Dimemsion:	$2 \cdot \mathrm{a}=6 \cdot \mathrm{ft}$

*Note: Use Components \& Cladding wind loading for Main Wind Force Resisting System checks due to small size of structure - C\&C loads are higher than MWFRS loads and therefore will be conservative.

Total Wind Load Base Shear
Area of elevation of building: $\quad A_{\max }:=\mathrm{L} \cdot \mathrm{H}=92.8 \mathrm{ft}^{2}$
Wind Design Base Shear: $\quad \mathrm{V}_{\mathrm{W}}:=\mathrm{A}_{\text {max }} \cdot \mathrm{P}_{\text {wallend }}=1.09 \cdot \mathrm{kip}$

Wind Load Parallel to Long Walls

Area of elevation of building:
$A_{\text {wall }}:=W \cdot\left(\frac{H}{2}\right)=27.66 \mathrm{ft}^{2}$
Area of end zone of wall:
$A_{\text {wallend }}:=(2 \cdot a) \cdot\left(\frac{H}{2}\right)=26.2 \mathrm{ft}^{2}$
Area of body of wall:
Awallint: $: A_{\text {wall }}-A_{\text {wallend }}=1.46 \mathrm{ft}^{2}$

Load to roof from wind load
VWS $:=A_{\text {wallend }} \cdot P_{\text {wallend }}+A_{\text {wallint }} \cdot P_{\text {wallint }}=0.32 \cdot \mathrm{kip}$ parallel to long walls:

Wind Load Parallel to Short Walls

Area of wall of building:
Awall : $=\mathrm{L} \cdot\left(\frac{\mathrm{H}}{2}\right)=46.4 \mathrm{ft}^{2}$
Area of end zone of walls:
Awallend $:=(2 \cdot a) \cdot\left(\frac{H}{2}\right)=26.2 \mathrm{ft}^{2}$
Area of body of wall:
Awallint: $:=A_{\text {wall }}-A_{\text {wallend }}=20.2 \mathrm{ft}^{2}$
Load to roof from wind load parallel to short walls:
$\mathrm{V}_{\mathrm{WL}}:=A_{\text {wallend }} \cdot P_{\text {wallend }}+A_{\text {wallint }} \cdot P_{\text {wallint }}=0.52 \cdot \mathrm{kip}$

Seismic Loads

Seismic Response Coefficient:
$C_{S}:=0.042 \quad C_{S A S D}:=0.7 \cdot C_{S}=0.029$

Area of Roof:

Weight of Structure:

Seismic Design Base Shear:

Seismic Loading to Roof:
Aroofe $:=\mathrm{L} \cdot \mathrm{W}=67 \mathrm{ft}^{2}$
Weight := RDL•AroofE $+(\mathrm{WDL}) \cdot[(2 \cdot \mathrm{~L}+2 \cdot \mathrm{~W}) \cdot \mathrm{H}]=8.36 \cdot \mathrm{kip}$
$V_{E}:=C_{S A S D} \cdot$ Weight $\cdot \rho=0.32 \cdot$ kip
$V_{\text {roof }}:=$ CSASD $\cdot\left[\right.$ RDL \cdot A $_{\text {roofe }}+($ WDL $) \cdot\left[(2 \cdot L+2 \cdot W) \cdot \frac{H}{2}\right] \cdot \rho=0.19 \cdot$ kip
*Reference Load Determination section for seismic, wind, and snow loading calculations

SUBJECT: Portland Loo - Somerville SHEET NO. 35

Lateral Loading on Structure

$\mathrm{V}_{\text {roof }}=0.19$.kip
VWS $=0.32 \cdot \mathrm{kip}$

Loads Parallel to Short Wall
$\mathrm{V}_{\text {roof }}=0.19$.kip
$V_{W L}=0.52 \cdot \mathrm{kip}$

Governing Lateral Design Loads (maximum of wind or seismic loading):
Parallel to Long Walls:
$V_{\text {long }}:=\max \left(V_{W S}, V_{\text {roof }}\right)=0.32 \cdot$ kip

Parallel to Short Walls:
$V_{\text {short }}:=\max \left(V_{W L}, V_{\text {roof }}\right)=0.52 \cdot$ kip
Wind Controls
Wind Controls

SUBJECT: Portland Loo - Somerville

GRAVITY DESIGN: STEEL ROOF PLATE

Material Properties - $\mathbf{3 0 4}$ Stainless Steel
Yield Strength:
Modulus of Elasticity:
Thickness of Plate:

Loading

Maximum Load on Plate:
$T L_{\text {pos }}:=\max \left(R D L+R L L, R D L+R S L, R D L+p_{\text {croofpos }}, R D L+0.75 \cdot p_{\text {croofpos }}+0.75 \cdot R L L, R D L+0.75 \cdot p_{\text {croofpos }}+0.75 \cdot R S L\right)$

$$
\begin{gathered}
T L_{\text {pos }}=53 \cdot \mathrm{psf} \\
T L_{\text {neg }}:=\max (0.6 \cdot R D L+\text { pcroofend })=26 \cdot \mathrm{psf} \\
T L_{\text {max }}:=\max \left(\mathrm{T}_{\text {pos }}, \mathrm{T} \mathrm{~L}_{\text {neg }}\right)=53 \cdot \mathrm{psf}
\end{gathered}
$$

Maximum Load on Plate for Delfection Calculation:

$$
\begin{aligned}
& T L_{\text {pos }}:=\max (R D L+R L L, R D L+R S L, R D L+0.7 \cdot \text { pcroofpos } \text {,RDL }+ \text { 0.75.0.7. } \text { pcroofpos }+0.75 \cdot R L L) \\
& T L_{\text {pos }}=53 \cdot \mathrm{psf} \\
& T L_{\text {neg }} \Delta:=\max (0.6 \cdot R D L+0.7 \cdot \text { croofend })=22 \cdot \text { psf } \\
& T L_{\text {max }} \Delta:=\max \left(T L_{\text {pos }} \Delta, T \operatorname{Lneg}_{\text {neg }}\right)=53 \text {.psf }
\end{aligned}
$$

Geometry

Plate Width:

$$
\mathrm{a}:=6 \mathrm{ft}+4 \mathrm{in}
$$

Plate Span Length:

$$
\mathrm{b}:=30.75 \mathrm{in}
$$

Tabulated Values:

(relations among load, stress and deflection are expressed by dimensionless coefficients shown below)
See Roark's Formulas for Stress \& Strain, Sixth Edition - Plate support on 2 sides and pinned

$$
\begin{aligned}
& \operatorname{coef}_{\mathrm{q}}=\frac{\mathrm{TL}_{\text {max }} \cdot \mathrm{b}^{4}}{\mathrm{E} \cdot \mathrm{t}^{4}} \quad \operatorname{coef}_{\sigma}=\frac{\sigma \cdot \mathrm{b}^{2}}{\mathrm{E} \cdot \mathrm{t}^{2}} \quad \quad \operatorname{coef} \mathrm{y}=\frac{\mathrm{y}}{\mathrm{t}} \\
& \operatorname{coef}_{q}:=\left(\begin{array}{llllllllll}
0 & 12.5 & 25 & 50 & 75 & 100 & 125 & 150 & 175 & 200 \\
250
\end{array}\right)^{\top} \\
& \operatorname{coef}_{\sigma 1}:=\left(\begin{array}{lllllllllll}
0 & 3.8 & 5.8 & 8.7 & 10.9 & 12.8 & 14.3 & 15.6 & 17.0 & 18.2 & 20.5
\end{array}\right)^{\top} \\
& \text { coef }_{y 1}:=\left(\begin{array}{llllllllll}
0 & 0.430 & 0.650 & 0.93 & 1.13 & 1.26 & 1.37 & 1.47 & 1.56 & 1.63
\end{array} 1.77\right)^{\top} \\
& \text { coef }_{\sigma 15}:=\left(\begin{array}{llllllllll}
0 & 4.48 & 6.81 & 9.92 & 12.25 & 14.22 & 16 & 17.50 & 18.9 & 20.3
\end{array} 22.8\right)^{\top} \\
& \text { coef }_{y 15}:=\left(\begin{array}{lllllllllll}
0 & 0.625 & 0.879 & 1.18 & 1.37 & 1.53 & 1.68 & 1.77 & 1.88 & 1.96 & 2.12
\end{array}\right)^{\top} \\
& \operatorname{coef}_{\sigma 2}:=\left(\begin{array}{llllllllll}
0 & 4.87 & 7.16 & 10.3 & 12.6 & 14.6 & 16.4 & 18 & 19.4 & 20.9 \\
23.6
\end{array}\right)^{\top} \\
& \text { coefy2 }:=\left(\begin{array}{lllllllllll}
0 & 0.696 & 0.946 & 1.24 & 1.44 & 1.6 & 1.72 & 1.84 & 1.94 & 2.03 & 2.2
\end{array}\right)^{\top} \\
& \operatorname{coef}_{\sigma}:=\left\lvert\, \begin{array}{l}
\operatorname{coef}_{\sigma 1} \text { if } \frac{a}{b} \leq 1.25 \\
\operatorname{coef}_{\sigma 15} \text { if } 1.25<\frac{a}{b} \leq 1.75 \\
\operatorname{coef}_{\sigma 2} \text { otherwise }
\end{array}\right. \\
& \text { coefy: }=\left\{\begin{array}{l}
\text { coef }_{\mathrm{y} 1} \text { if } \frac{a}{b} \leq 1.25 \\
\text { coef }_{\mathrm{y} 15} \text { if } 1.25<\frac{a}{b} \leq 1.75 \\
\text { coefy } \mathrm{y} \text { otherwise }
\end{array}\right.
\end{aligned}
$$

SUBJECT: Portland Loo - Somerville SHEET NO. 37
Structural Calculations PROJECT NO. 21230893.000

Check Stress

$$
\begin{aligned}
& \sigma:=\operatorname{linterp}\left[\left(\operatorname{coef}_{q}\right), \operatorname{coef}_{\sigma}, \frac{\mathrm{TL}_{\text {max }} \cdot \mathrm{b}^{4}}{\mathrm{E} \cdot \mathrm{t}^{4}}\right] \cdot\left(\frac{\mathrm{E} \cdot \mathrm{t}^{2}}{\mathrm{~b}^{2}}\right)=3.86 \cdot \mathrm{ksi} \\
& \sigma:=\text { if }\left(\frac{\mathrm{TL} \max \cdot \mathrm{~b}^{4}}{\mathrm{E} \cdot \mathrm{t}^{4}}<250, \text { "Ok" }, \text { "OUT OF RANGE" }\right)=\text { "Ok" } \\
& \frac{(4.2 \mathrm{ksi}) \cdot 1.67}{\mathrm{Fy}_{\mathrm{y}}}=0.23<1.00 \mathrm{OK}
\end{aligned}
$$

Check Deflection

$$
\begin{aligned}
& \text { Yallow }:=\frac{b}{200}=0.15 \cdot \text { in }^{2} \\
& y:=\operatorname{linterp}\left[\left(\operatorname{coef}_{q}\right), \operatorname{coef}_{\mathrm{y}} \mathrm{~T}, \frac{\mathrm{TLmax} \Delta \cdot(\mathrm{~b})^{4}}{\mathrm{E} \cdot \mathrm{t}^{4}}\right] \cdot \mathrm{t}=0.12 \cdot \mathrm{in} \\
& \frac{y}{\text { yallow }}=0.76 \quad<1.00 \mathrm{OK}
\end{aligned}
$$

SUBJECT: Portland Loo - Somerville
Structural Calculations
Madden Fabrication

SHEET NO. 38

GRAVITY DESIGN: STEEL ROOF PLATE CONNECTIONS

Maximum Uplift on Plate:
Plate Width:
Plate Span Length:
Number of Fasteners:
Maximum Tension on Fastener:

Allowable Tension 3/8"\$ 304
Stainless Bolt :

Minimum Material Thickness for Allowable Tension:

Beam Wall Thickness:

Allowable Pullout:
$\frac{T_{\text {fast }}}{T_{\text {pullout }}}=0.17<1.00 \mathrm{OK}$
$T L_{\text {neg }}=25.98 \cdot \mathrm{psf}$
$\mathrm{a}=6.33 . \mathrm{ft}$
$\mathrm{b}=2.56 \mathrm{ft}$
$\mathrm{n}:=2$
$T_{\text {fast }}:=T_{\text {neg }} \cdot b \cdot \frac{a}{n}=210.82 \cdot \mathrm{Ibf}$

Tallow := 1612lbf
$t_{\text {min }}:=0.2319$ in
$t_{\text {wall }}:=0.174$ in $\quad(H S S 3 \times 2 \times 3 / 16)$
$T_{\text {pullout }}:=\min \left[T_{\text {allow }}, T_{\text {allow }} \cdot\left(\frac{t_{\text {wall }}}{t_{\text {min }}}\right)\right]=1210 \cdot \mathrm{lbf}$
(2) 3/8" diameter bolts are adequate for roof plate to roof beam connection. Hold-down bolts at columns shall also be used. Bolts to be 304 stainless steel, condition "A" ($F_{\underline{u}}=73 \mathrm{ksi}$ minimum).

SUBJECT: Portland Loo - Somerville SHEET NO. 39

GRAVITY DESIGN: STEEL ROOF BEAMS

HSS $3 \times 2 \times 3 / 16$ Section Properties

$\mathrm{I}_{\mathrm{x}}:=1.77 \mathrm{in}^{4}$	$\mathrm{~S}_{\mathrm{x}}:=1.18 \mathrm{in}^{3}$	$\mathrm{r}_{\mathrm{x}}:=1.07 \mathrm{in}$	$\mathrm{Z}_{\mathrm{x}}:=1.48 \mathrm{in}^{3}$	$\mathrm{~F}_{\mathrm{y}}:=30 \mathrm{ksi}$
$\mathrm{I}_{\mathrm{y}}:=0.932 \mathrm{in}^{4}$	$\mathrm{~S}_{\mathrm{y}}:=0.932 \mathrm{in}^{3} \quad \mathrm{r}_{\mathrm{y}}:=0.778 \mathrm{in} \quad \mathrm{Z}_{\mathrm{y}}:=1.12 \mathrm{in}^{3}$		$\Omega_{\mathrm{b}}:=1.67$	
$\mathrm{t}:=0.174 \mathrm{in}$	$\mathrm{b}:=8.49 \cdot \mathrm{t}=1.48 \cdot \mathrm{in} \quad \mathrm{h}:=14.2 \cdot \mathrm{t}=2.47 \cdot \mathrm{in}$	$\mathrm{B}_{\mathrm{f}}:=2 \mathrm{in}$	$\mathrm{H}_{\mathrm{w}}:=3 \mathrm{in}$	

Determine Nominal Moment Capacity

Slenderness := $\begin{aligned} & \text { "compact" if } \frac{b}{t}<1.12 \cdot \sqrt{\frac{E}{F_{y}}} \\ & \text { "slender" if } \frac{b}{t}>1.40 \cdot \sqrt{\frac{E}{F_{y}}} \\ & \text { "noncompact" if } 1.12 \cdot \sqrt{\frac{E}{F_{y}}} \leq \frac{b}{t} \leq 1.40 \cdot \sqrt{\frac{E}{F_{y}}}\end{aligned} \quad=$ "compact"

Yielding

$M_{p}:=F_{y} \cdot Z_{x}=3.7 \cdot$ kip $\cdot f t$
$M_{n}:=M_{p}=3.7 \cdot \mathrm{kip} \cdot \mathrm{ft}$

Flange Local Buckling

$\mathrm{b}_{\mathrm{e}}:=\min \left[1.92 \cdot \mathrm{t} \cdot \sqrt{\frac{\mathrm{E}}{F_{y}}} \cdot\left(1-\frac{0.38}{\frac{\mathrm{~b}}{\mathrm{t}}} \cdot \sqrt{\frac{E}{F_{y}}}\right), \mathrm{b}\right]=-2.45 \cdot \mathrm{in}$
$I_{\text {eff }}:=I_{X}-2 \cdot\left[\left(b-b_{e}\right) \cdot t \cdot(B f-t)^{2}+\frac{\left(b-b_{e}\right) \cdot t^{3}}{12}\right]=-2.79 \cdot$ in 4
$\mathrm{S}_{\mathrm{e}}:=\frac{\mathrm{I}_{\text {eff }}}{\frac{\mathrm{H}_{\mathrm{w}}}{2}}=-1.86 \cdot \mathrm{in}^{3}$
$M_{n _}$flb $:=\left\{\begin{array}{l}\min \left[M_{p}-\left(M_{p}-F_{y} \cdot S_{x}\right) \cdot\left(3.57 \cdot \frac{b}{t} \cdot \sqrt{\frac{F_{y}}{E}}-4.0\right), M_{p}\right] \text { if Slenderness }=\text { "noncompact" }=3.7 \cdot \mathrm{kip} \cdot \mathrm{ft} \\ F_{y} \cdot S_{e} \text { if Slenderness }=\text { "slender" } \\ M_{n} \text { if Slenderness }=\text { "compact" }\end{array}\right.$

Web Local Buckling

$M_{n _w l b}:=\left\lvert\, \begin{aligned} & \min \left[M_{p}-\left(M_{p}-F_{y} \cdot S_{x}\right) \cdot\left(0.305 \cdot \frac{\mathrm{~h}}{\mathrm{t}} \cdot \sqrt{\frac{F_{y}}{E}}-0.738\right), M_{p}\right] \text { if Slenderness }=\text { "noncompact" }=3.7 \cdot \mathrm{kip} \cdot \mathrm{ft} \\ & M_{\mathrm{n}} \text { if Slenderness }=\text { "compact" }\end{aligned}\right.$
$M_{n}:=\min \left(M_{n}, M_{n _} f l b, M_{n _w l b}\right)=3.7 \cdot k i p \cdot f t$

Larson

Applied Load:
$T L_{m a x}=53 \cdot \mathrm{psf}$

Maximum Beam Span:
span := 5ft + in
Worst Case Tributary Width:
TW := $2 \mathrm{ft}+10 \mathrm{in}$
*Check center beam - worst case loading

Distributed Load to Beam:
Distributed Load to Beam: (for deflection calculation)

Maximum Beam End Reaction:

Check Stress

Moment:
$\frac{M_{\text {beam }} \cdot \Omega_{\mathrm{b}}}{\mathrm{M}_{\mathrm{n}}}=0.17<1.00 \mathrm{OK}$

Check Deflection

Allowable Deflection:
$\Delta_{\text {allow }}:=\frac{\text { span }}{240}=0.27 \cdot$ in

Deflection:
$\frac{\Delta_{\text {beam }}}{\Delta_{\text {allow }}}=0.25<1.00 \mathrm{OK}$
$M_{\text {beam }}:=\frac{\mathrm{w} \cdot \mathrm{span}^{2}}{12}=0.37 \cdot \mathrm{kip} \cdot \mathrm{ft}$
Δ beam $:=\frac{5 \cdot \mathrm{w}_{\Delta} \cdot \mathrm{span}^{4}}{384 \cdot \mathrm{E} \cdot \mathrm{I}_{\mathrm{X}}}=0.07 \cdot \mathrm{in}$

HSS $3 \times 2 \times 3 / 16$ " tubes are adequate for roof beams

GRAVITY DESIGN: STEEL ROOF BEAM CONNECTIONS

Maximum Beam End Reaction:

Allowable Shear Stress (316SS):
Allowable tensile Stress (316SS):
Nominal Bolt Diameter:
Thread Root Area:
Tensile Strength of HSS:
Tensile Strength of Cap Plate:

HSS Wall Thickness:
Cap Plate Thickness:

Check Bolted Condition
Maximum Bolt Loads:

Clear Distance to Plate Edge:
Safety Factor:

Bearing Strength:

Bolt Strength:
$\left(\frac{T_{\text {max }}}{T_{\text {bolt }}}\right)^{2}+\left(\frac{V_{\text {max }}}{V_{\text {allow }}}\right)^{2}=0.25$
Check Welded Condition
Weld Thickness:
Filler Metal Strength
Safety Factor:
Weld Width:
Weld Height:
Total Weld Length:

Actual Weld Loads:

Allowable Weld Strength:
$\frac{V_{\text {weld }}}{V_{\text {allow }}}=0.26<1.00 \mathrm{OK}$
$R_{\max }=0.41 \cdot \mathrm{kip}$
$\mathrm{F}_{\mathrm{V}}:=12.99 \mathrm{ksi}$
$\mathrm{Ft}_{\mathrm{t}}:=56.25 \mathrm{ksi}$
$d:=0.375$ in
$A_{R}:=0.0699$ in 2
FuHSS := 58ksi

FuCAP := 58ksi
$F_{u}:=\min \left(\right.$ FuHSS,$\left.F_{u C A P}\right)=58 \cdot \mathrm{ksi}$
$\mathrm{t}=0.174$. in
$\mathrm{t}_{\text {cap }}:=0.1875$ in
$\mathrm{t}:=\min \left(\mathrm{t}, \mathrm{t}_{\text {cap }}\right)=0.174 . \mathrm{in}$

$$
V_{\max }:=\frac{R_{\max }}{2}=203 . \mathrm{lbf} \quad \quad T_{\max }:=\frac{M_{\text {beam }}}{2.5 \mathrm{in}}=1.76 \cdot \mathrm{kip}
$$

$I_{c}:=0.75 \mathrm{in}-\frac{(d+0.0625 \mathrm{in})}{2}=0.53 . \mathrm{in}$
$\Omega_{\mathrm{brg}}:=2.0$
$\mathrm{V}_{\mathrm{brg}}:=\min \left(\frac{1.2 \cdot \mathrm{I}_{\mathrm{c}} \cdot \mathrm{t} \cdot \mathrm{F}_{\mathrm{u}}}{\Omega_{\mathrm{brg}}}, \frac{2.4 \cdot \mathrm{~d} \cdot \mathrm{t} \cdot \mathrm{F}_{\mathrm{u}}}{\Omega_{\mathrm{brg}}}\right)=3217 \cdot \mathrm{lbf}$
$V_{\text {bolt }}:=F_{V} \cdot A_{R}=908 . \mathrm{lbf}$
$V_{\text {allow }}:=\min \left(V_{\text {brg }}, V_{\text {bolt }}\right)=908 . \mathrm{lbf}$
$T_{\text {bolt }}:=\mathrm{Ft}_{\mathrm{t}} \cdot \mathrm{AR}_{\mathrm{R}}=3.93$.kip
< 1.00 OK \quad (2) 3/8" diameter bolts are adequate for roof beam connection to posts.
Bolts to be 316 stainless steel, condition "A" ($\underline{u}_{\underline{u}}=75 \mathrm{ksi}$ min).
$\mathrm{t}_{\mathrm{w}}:=0.125 \mathrm{in}$
FEXX: = 70ksi
$\Omega_{\mathrm{W}}:=2.0$
$b_{w}:=2$ in
$d_{w}:=3 i n$
$A_{w}:=2 \cdot b_{w}+2 \cdot d_{w}=10 \cdot$ in
$V_{\text {weld }}:=\sqrt{\left(\frac{R_{\max }}{A_{w}}\right)^{2}+\left(\frac{M_{\text {beam }}}{9 \text { in }^{2}}\right)^{2}}=0.49 \cdot \frac{\mathrm{kip}}{\text { in }}$
$V_{\text {allow }}:=\frac{0.6 \cdot \mathrm{FEXX} \cdot 0.707 \cdot \mathrm{t}_{\mathrm{w}}}{\Omega_{\mathrm{w}}}=1.86 \cdot \frac{\mathrm{kip}}{\mathrm{in}}$

1/8" fillet weld all-around is adequate for roof beam connection to posts.

GRAVITY DESIGN: STEEL POSTS

HSS3x3x3/16 Section Properties

$\mathrm{I}_{\mathrm{x}}:=2.46 \mathrm{in}^{4}$	$\mathrm{~S}_{\mathrm{x}}:=1.64 \mathrm{in}^{3}$	$\mathrm{r}_{\mathrm{x}}:=1.14 \mathrm{in}$	$\mathrm{Z}_{\mathrm{x}}:=1.97 \mathrm{in}^{3}$	$\mathrm{~F}_{\mathrm{y}}=30 \cdot \mathrm{ksi}$
$\mathrm{I}_{\mathrm{y}}:=2.46 \mathrm{in}^{4}$	$\mathrm{~S}_{\mathrm{y}}:=1.64 \mathrm{in}^{3}$	$\mathrm{r}_{\mathrm{y}}:=1.14 \mathrm{in} \quad \mathrm{Z}_{\mathrm{y}}:=1.97 \mathrm{in}^{3}$	$\Omega_{\mathrm{C}}:=1.67$	
$\mathrm{t}:=0.174 \mathrm{in}$	$\mathrm{b}:=14.2 \cdot \mathrm{t}=2.47 \cdot \mathrm{in} \mathrm{in}^{2}$	$\Omega_{\mathrm{b}}:=1.67$		
$\mathrm{~h}:=14.2 \cdot \mathrm{t}=2.47 \cdot \mathrm{in}$	$\mathrm{B}_{\mathrm{f}}:=3 \mathrm{in}$	$\mathrm{H}_{\mathrm{w}}:=3 \mathrm{in}$		

$$
\mathrm{K}:=1.0 \quad \mathrm{H}=8.73 \mathrm{ft}
$$

Determine Nominal Axial Capacity

Slenderness:= $\begin{aligned} & \text { "nonslender" if } \frac{b}{t}<1.40 \cdot \sqrt{\frac{E}{F_{y}}}=\text { "nonslender" } \\ & \text { "slender" if } \frac{b}{t} \geq 1.40 \cdot \sqrt{\frac{E}{F_{y}}}\end{aligned}$

Flexural Buckling

$\mathrm{Fe}_{\mathrm{e}}:=\frac{\pi^{2} \cdot \mathrm{E}}{\left(\frac{\mathrm{K} \cdot \mathrm{L}}{r_{X}}\right)^{2}}=18.78 \cdot \mathrm{ksi}$
$F_{c r}:=\left\{\begin{array}{c}\frac{F_{y}}{F_{e}} \\ 0.65{ }^{F_{e}} \cdot F_{y} \text { if } \frac{K \cdot H}{r_{x}} \leq 4.71 \cdot \sqrt{\frac{E}{F_{y}}}=15.37 \cdot \mathrm{ksi} \\ 0.877 \cdot F_{e} \text { if } \frac{\mathrm{K} \cdot \mathrm{H}}{r_{x}}>4.71 \cdot \sqrt{\frac{E}{F_{y}}}\end{array}\right.$
$P_{\mathrm{n}}:=\left\lvert\, \begin{aligned} & \mathrm{F}_{\mathrm{cr}} \cdot \mathrm{A} \text { if Slenderness = "nonslender" } \\ & \text { "further analysis required" if Slenderness = "slender" }\end{aligned}\right.$

Determine Nominal Moment Capacity

Slenderness := $\begin{aligned} & \text { "compact" if } \frac{b}{t}<1.12 \cdot \sqrt{\frac{E}{F_{y}}} \\ & \text { "slender" if } \frac{b}{t}>1.40 \cdot \sqrt{\frac{E}{F_{y}}} \\ & \text { "noncompact" if } 1.12 \cdot \sqrt{\frac{E}{F_{y}}} \leq \frac{b}{t} \leq 1.40 \cdot \sqrt{\frac{E}{F_{y}}}\end{aligned} \quad=$ "compact"

Yielding

$M_{p}:=F_{y} \cdot Z_{x}=4.92 \cdot \mathrm{kip} \cdot \mathrm{ft}$
$M_{n}:=M_{p}=4.92$.kip.ft

Flange Local Buckling

$\mathrm{be}_{\mathrm{e}}:=\min \left[1.92 \cdot \mathrm{t} \cdot \sqrt{\frac{\mathrm{E}}{F_{y}}} \cdot\left(1-\frac{0.38}{\frac{b}{t}} \cdot \sqrt{\frac{E}{F_{y}}}\right), \mathrm{b}\right]=2.32 \cdot$ in
$I_{\text {eff }}:=I_{X}-2 \cdot\left[\left(b-b_{e}\right) \cdot t \cdot\left(B_{f}-t\right)^{2}+\frac{\left(b-b_{e}\right) \cdot t^{3}}{12}\right]=2.03 \cdot$ in 4
$\mathrm{S}_{\mathrm{e}}:=\frac{\text { Ieff }}{\frac{\mathrm{H}_{\mathrm{w}}}{2}}=1.36 \cdot \mathrm{in}^{3}$
$M_{n _f i b}:=\left\{\begin{array}{l}\min \left[M_{p}-\left(M_{p}-F_{y} \cdot S_{x}\right) \cdot\left(3.57 \cdot \frac{b}{t} \cdot \sqrt{\frac{F_{y}}{E}}-4.0\right), M_{p}\right] \text { if Slenderness = "noncompact" }=4.92 \cdot \mathrm{kip} \cdot \mathrm{ft} \\ F_{y} \cdot S_{e} \text { if Slenderness = "slender"" } \\ M_{n} \text { if Slenderness = "compact" }\end{array}\right.$

Web Local Buckling

$$
\begin{aligned}
& M_{n _w l b}:=\left\lvert\, \begin{array}{l}
\min \left[M_{p}-\left(M_{p}-F_{y} \cdot S_{x}\right) \cdot\left(0.305 \cdot \frac{h}{t} \cdot \sqrt{\frac{F_{y}}{E}}-0.738\right), M_{p}\right] \text { if Slenderness }=\text { "noncompact" }=4.92 \cdot \mathrm{kip} \cdot f \mathrm{ft} \\
M_{n} \text { if Slenderness }=\text { "compact" }
\end{array}\right. \\
& M_{n}:=\min \left(M_{n}, M_{n _f l}, M_{n _w l b}\right)=4.92 \cdot \mathrm{kip} \cdot f \mathrm{ft}
\end{aligned}
$$

SUBJECT: Portland Loo - Somerville SHEET NO. 314
Structural Calculations PROJECT NO. 21230893.000

Combined Stress:

$$
\text { UNITY }:=\left\lvert\, \begin{aligned}
& \frac{P_{\max } \cdot \Omega_{\mathrm{C}}}{P_{\mathrm{n}}}+\frac{8}{9} \cdot \frac{M_{\text {dist }} \cdot \Omega_{\mathrm{b}}}{M_{\mathrm{n}}} \text { if } \frac{P_{\max } \cdot \Omega_{\mathrm{c}}}{P_{\mathrm{n}}} \geq 0.2=0.12 \quad<1.00 \mathrm{OK} \\
& \frac{P_{\text {max }} \cdot \Omega_{\mathrm{c}}}{2 \cdot P_{\mathrm{n}}}+\frac{M_{\text {dist }} \cdot \Omega_{\mathrm{b}}}{M_{\mathrm{n}}} \text { if } \frac{P_{\max } \cdot \Omega_{\mathrm{c}}}{P_{\mathrm{n}}}<0.2
\end{aligned}\right.
$$

HSS3x3x3/16" LSV tubes are adequate for posts

GRAVITY DESIGN: STEEL POST LIFTING CAP

Total Unit Weight:
Load to Litting Plate:

Check Plate

Plate Thickness:
Plate Width:
Plate Yield Strength:

Plastic Modulus of Plate:

Safety Factor:
Maximum Moment on Plate:

Allowable Moment on Plate:
$\frac{M_{\text {plate }}}{M_{\text {allow }}}=0.47<1.00 \mathrm{OK}$

Check Weld

Weld Thickness:
Filler Metal Strength:
Safety Factor:
Weld Width:
Weld Height:
Total Weld Length:
Shear Load on Weld:

Allowable Weld Strength:
$\frac{V_{\text {weld }}}{V_{\text {allow }}}=0.1<1.00 \mathrm{OK}$

Weight $=8.36$.kip
Plift := Weight $=2.09$. kip \quad *conservatively analyze lift from (4) columns only
tplate $:=0.5$ in
$w_{\text {plate }}:=3$ in $-2 \cdot(0.174 \mathrm{in})=2.65$ in
Fy_plate : = 30ksi
Zplate $:=\frac{\text { tplate }^{2} \cdot \mathrm{w}_{\text {plate }}}{4}=0.17 \cdot$ in 3
$\Omega_{\mathrm{b}}:=1.67$
$M_{\text {plate }}:=\frac{\text { Plift } \cdot \mathrm{W}_{\text {plate }}}{4}=1.39 \cdot \mathrm{kip} \cdot \mathrm{in}$
$M_{\text {allow }}:=\frac{F_{y} \text { plate } \cdot Z_{\text {plate }}}{\Omega_{\mathrm{b}}}=2.98 \cdot \mathrm{kip} \cdot \mathrm{in}$

$\mathrm{b}_{\mathrm{w}}:=\mathrm{w}_{\text {plate }}=2.65 . \mathrm{in}$
$\mathrm{d}_{\mathrm{w}}:=\mathrm{w}_{\text {plate }}=2.65 \cdot \mathrm{in}$
$A_{w}:=2 \cdot b_{w}+2 \cdot d_{w}=10.61 \cdot \mathrm{in}$
$V_{\text {weld }}:=\frac{P_{\text {lift }}}{A_{w}}=0.2 \cdot \frac{\mathrm{kip}}{\mathrm{in}}$

$V_{\text {allow }}:=\frac{0.6 \cdot \mathrm{FeXX}_{\mathrm{EX}} \cdot 0.707 \cdot \mathrm{t}_{\mathrm{w}}}{\Omega_{\mathrm{w}}}=2.06 \cdot \frac{\mathrm{kip}}{\mathrm{in}}$

1/2" thick stainless steel lifting plate is adequate.
Use 3/16" fillet weld all-around for lifting cap connection to posts.

LATERAL DESIGN: STEEL WALL PANELS (OUT OF PLANE)

Material Properties - 304 Stainless Steel

Yield Strength:	$\mathrm{Fy}_{\mathrm{y}}:=30 \mathrm{ksi}$
Modulus of Elasticity:	$\mathrm{E}:=23800 \mathrm{ksi}$
Thickness of Plate:	$\mathrm{t}:=0.1875 \mathrm{in}$

Loading

Maximum Load on Plate:

$$
\mathrm{p}_{\text {cwallend }}=15 \cdot \mathrm{psf}
$$

Geometry

Plate Width:

$$
\mathrm{a}:=\mathrm{H}=8.73 . \mathrm{ft}
$$

Plate Span Length:
$\mathrm{b}:=36 \mathrm{in} \quad$ *conservative
Tabulated Values:
(relations among load, stress and deflection are expressed by dimensionless coefficients shown below)
See Roark's Formulas for Stress \& Strain, Sixth Edition - Plate support on 2 sides and pinned

$$
\begin{aligned}
& \operatorname{coef}_{\mathrm{q}}=\frac{\mathrm{TL}_{\max } \cdot \mathrm{b}^{4}}{\mathrm{E} \cdot \mathrm{t}^{4}} \quad \operatorname{coef}_{\sigma}=\frac{\sigma \cdot \mathrm{b}^{2}}{\mathrm{E} \cdot \mathrm{t}^{2}} \quad \quad \operatorname{coef}_{y}=\frac{\mathrm{y}}{\mathrm{t}} \\
& \operatorname{coef}_{q}:=\left(\begin{array}{llllllllll}
0 & 12.5 & 25 & 50 & 75 & 100 & 125 & 150 & 175 & 200 \\
250
\end{array}\right)^{\top} \\
& \operatorname{coef}_{\sigma 1}:=\left(\begin{array}{lllllllllll}
0 & 3.8 & 5.8 & 8.7 & 10.9 & 12.8 & 14.3 & 15.6 & 17.0 & 18.2 & 20.5
\end{array}\right)^{\top} \\
& \text { coef }_{y 1}:=\left(\begin{array}{lllllllllll}
0 & 0.430 & 0.650 & 0.93 & 1.13 & 1.26 & 1.37 & 1.47 & 1.56 & 1.63 & 1.77
\end{array}\right)^{\top} \\
& \text { coef }_{\sigma 15}:=\left(\begin{array}{lllllllll}
0 & 4.48 & 6.81 & 9.92 & 12.25 & 14.22 & 16 & 17.50 & 18.9 \\
20.3 & 22.8
\end{array}\right)^{\top} \\
& \text { coefy } 15:=\left(\begin{array}{llllllllll}
0 & 0.625 & 0.879 & 1.18 & 1.37 & 1.53 & 1.68 & 1.77 & 1.88 & 1.96 \\
2
\end{array} \mathbf{l}^{\top} 12\right)^{\top} \\
& \text { coef }_{\sigma 2}:=\left(\begin{array}{lllllllllll}
0 & 4.87 & 7.16 & 10.3 & 12.6 & 14.6 & 16.4 & 18 & 19.4 & 20.9 & 23.6
\end{array}\right)^{\top} \\
& \text { coef } y_{2}:=\left(\begin{array}{lllllllllll}
0 & 0.696 & 0.946 & 1.24 & 1.44 & 1.6 & 1.72 & 1.84 & 1.94 & 2.03 & 2.2
\end{array}\right)^{\top} \\
& \operatorname{coef}_{\sigma}:=\left\{\begin{array}{l}
\operatorname{coef}_{\sigma 1} \text { if } \frac{a}{b} \leq 1.25 \\
\operatorname{coef}_{\sigma 15} \text { if } 1.25<\frac{a}{b} \leq 1.75 \\
\operatorname{coef}_{\sigma 2} \text { otherwise }
\end{array}\right. \\
& \text { coef } y:=\left\lvert\, \begin{array}{l}
\text { coef }_{\mathrm{y} 1} \text { if } \frac{a}{b} \leq 1.25 \\
\text { coef }_{\mathrm{y} 15} \text { if } 1.25<\frac{a}{b} \leq 1.75 \\
\text { coef }_{\mathrm{y} 2} \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Check Stress

$\sigma:=\operatorname{linterp}\left[\left(\operatorname{coef}_{\mathrm{q}}\right), \operatorname{coef}_{\sigma}, \frac{\mathrm{p}_{\text {cwallend }} \cdot \mathrm{b}^{4}}{\mathrm{E} \cdot \mathrm{t}^{4}}\right] \cdot\left(\frac{\mathrm{E} \cdot \mathrm{t}^{2}}{\mathrm{~b}^{2}}\right)=1.5 \cdot \mathrm{ksi}$
$\sigma:=$ if $\left(\frac{\text { pcwallend } \cdot \mathrm{b}^{4}}{\mathrm{E} \cdot \mathrm{t}^{4}}<250\right.$, "Ok" , "OUT OF RANGE" $)=$ "Ok" $\cdot \mathrm{ksi}$
$\frac{1.67 \cdot(2.29 \mathrm{ksi})}{\mathrm{F}_{\mathrm{y}}}=0.13<1.00 \mathrm{OK}$

Check Deflection

Yallow : $=\frac{b}{200}=0.18 \cdot \mathrm{in}$
$y:=\operatorname{linterp}\left[\left(\operatorname{coef}_{\mathrm{q}}\right), \operatorname{coef}_{\mathrm{y}}, \frac{0.7 \cdot \mathrm{p}_{\mathrm{cwall}} \mathrm{den} \cdot(\mathrm{b})^{4}}{\mathrm{E} \cdot \mathrm{t}^{4}}\right] \cdot \mathrm{t}=0.04 \cdot$ in
$\frac{\mathrm{y}}{\text { yallow }}=0.24<1.00 \mathrm{OK}$

3/16" stainless steel plate is adequate for wall panels for out of plane loading

Check Connection

Maximum Wall Panel Reaction:
Fastener Spacing:

Maximum Screw Shear:
$\mathrm{V}_{\text {max }}:=$ Rpanel $\cdot \mathrm{sp}=90 \cdot \mathrm{lbf}$
Fastener Allowable:
$\frac{V_{\text {max }}}{V_{\text {allow }}}=0.1 \quad<1.00 \mathrm{OK}$
Rpanel := pcwallend $\cdot \mathrm{b}=45$ - plf
sp := 24in

Vallow := 912lbf
panel connection to posts.
Fasteners to be 316 stainless steel, condition "A" ($\mathrm{F}_{\underline{u}}=\mathbf{7 5 k s i}$ minimum).

SUBJECT: Portland Loo - Somerville

LATERAL DESIGN: LOAD DISTRIBUTION

Geometry

Width:

$$
\mathrm{w}=6.33 \mathrm{ft}
$$

Length:

$$
\mathrm{L}=10.63 \mathrm{ft}
$$

Rectangular Area Length:

$$
L_{r}:=L-\frac{W}{2}=7.46 \mathrm{ft}
$$

Center of Mass
Area of Front Radius:

$$
\mathrm{A}_{1}:=\frac{\pi \cdot\left(\frac{\mathrm{W}}{2}\right)^{2}}{2}=15.8 \mathrm{ft}^{2}
$$

Area of Rectangle:

$$
\mathrm{A}_{2}:=\mathrm{L}_{\mathrm{r}} \cdot \mathrm{~W}=47.2 \mathrm{ft}^{2}
$$

Total Area:

$$
\text { Atot }:=A_{1}+A_{2}=63 \mathrm{ft}^{2}
$$

Centroid of Front Radius:

$$
\operatorname{Cent}_{\mathrm{A} 1}:=\frac{\mathrm{w}}{2} \cdot\left(1-\frac{4}{3 \cdot \pi}\right)=1.82 \mathrm{ft}
$$

Centroid of Rectangle:

$$
\text { Cent }_{\mathrm{A} 2}:=\frac{\mathrm{W}}{2}+\frac{\mathrm{Lr}_{r}}{2}=6.9 \mathrm{ft}
$$

Overall Centroid:

$$
\text { Cent }_{\mathrm{x}}:=\frac{\mathrm{A}_{1} \cdot \operatorname{Cent}_{\mathrm{A} 1}+\mathrm{A}_{2} \cdot \operatorname{Cent}_{\mathrm{A} 2}}{A_{\text {tot }}}=5.63 \mathrm{ft}
$$

$$
\text { Centy }:=\frac{W}{2}=3.17 \mathrm{ft}
$$

Location of Shear Wall 1:
$S W_{1 x}:=L-22 i n=8.79 f t$

Direct Lateral Loads

Parallel to Long Walls:
$V_{\text {long }}=0.32 \cdot \mathrm{kip}$
Parallel to Short Walls:
$v_{\text {short }}=0.52$.kip

Load Distribution

Shear Wall 1:

Shear Walls 2 \& 3:
$\mathrm{V}_{\mathrm{SW} 1}:=\mathrm{V}_{\text {short }}=0.52$ kip
$V_{S W 2}:=\max \left[\frac{V_{\text {long }}}{2}, \frac{V_{\text {short }} \cdot\left(\mathrm{SW}_{1 \mathrm{x}}-\text { Cent }_{\mathrm{x}}\right)}{\mathrm{W}}\right]=0.26 \cdot \mathrm{kip}$

SUBJECT: Portland Loo - Somerville SHEET NO. 319

LATERAL DESIGN: STEEL POST DESIGN

Geometry

Height of Shear Wall:	$\mathrm{H}=8.73 \mathrm{ft}$
Height of Steel Sheet Portion:	$\mathrm{H}_{\text {steel }}:=6 \mathrm{ft}$
Height of Cantilever:	$\mathrm{H}_{\text {cant }}:=\mathrm{H}-\mathrm{H}_{\text {steel }}=2.73 \mathrm{ft}$
Width of Shear Wall 1:	$\mathrm{W}_{\mathrm{SW} 1}:=5.5 \mathrm{ft}$
Width of Shear Walls $2 \& 3:$	$\mathrm{W}_{\mathrm{SW} 2}:=7 \mathrm{ft}$

Check Posts

HSS3x3x3/16 Section Properties

$\mathrm{I}_{\mathrm{X}}:=2.46 \mathrm{in}{ }^{4}$	$S_{x}:=1.64 \mathrm{in}^{3}$	$r_{x}:=1.14 \mathrm{in}$	$z_{\mathrm{x}}:=1.97 \mathrm{in}^{3}$	$\mathrm{F}_{\mathrm{y}}=30 \cdot \mathrm{ksi}$	$\Omega_{\mathrm{C}}:=1.67$
$\mathrm{Iy}:=2.46 \mathrm{in}{ }^{4}$	Sy $:=1.64 \mathrm{in}^{3}$	$r_{y}:=1.14 \mathrm{in}$	$z_{y}:=1.97 \mathrm{in}^{3}$	$\mathrm{A}:=1.89 \mathrm{in}^{2}$	$\Omega_{\mathrm{b}}:=1.67$
$\mathrm{t}:=0.174 \mathrm{in}$	$\mathrm{b}:=14.2 \cdot \mathrm{t}=2$.t $=2.47 \cdot \mathrm{in}$	$\mathrm{Bf}_{\mathrm{f}}:=3 \mathrm{in}$	$\mathrm{H}_{\mathrm{w}}:=3 \mathrm{in}$

$K:=1.0 \quad H=8.73 \mathrm{ft}$

Determine Nominal Axial Capacity

Slenderness := $\begin{aligned} & \text { "nonslender" if } \frac{b}{t}<1.40 \cdot \sqrt{\frac{E}{F_{y}}}=\text { "nonslender" } \\ & \text { "slender" if } \frac{b}{t} \geq 1.40 \cdot \sqrt{\frac{E}{F_{y}}}\end{aligned}$

Flexural Buckling

$\mathrm{Fe}_{\mathrm{e}}:=\frac{\pi^{2} \cdot \mathrm{E}}{\left(\frac{\mathrm{K} \cdot \mathrm{L}}{r_{X}}\right)^{2}}=18.78 \cdot \mathrm{ksi}$
$F_{C r}:=\left\lvert\, \begin{gathered}\frac{F_{y}}{F_{e}} \\ 0.658^{F_{y}} \text { if } \frac{\text { K.H }}{r_{x}} \leq 4.71 \cdot \sqrt{\frac{E}{F_{y}}}=15.37 \cdot \mathrm{ksi} \\ 0.877 \cdot \mathrm{Fe}_{\mathrm{e}} \text { if } \frac{\text { K.H }}{r_{x}}>4.71 \cdot \sqrt{\frac{E}{F_{y}}}\end{gathered}\right.$
$\mathrm{P}_{\mathrm{n}}:=\left\lvert\, \begin{aligned} & \mathrm{F}_{\mathrm{Cr}} \cdot \mathrm{A} \text { if Slenderness }=\text { "nonslender" } \\ & \text { "further analysis required" if Slenderness = "slender" }\end{aligned} \quad=29.05 \cdot \mathrm{kip}\right.$

Determine Nominal Moment Capacity

Slenderness := $\begin{aligned} & \text { "compact" if } \frac{b}{t}<1.12 \cdot \sqrt{\frac{E}{F_{y}}} \\ & \text { "slender" if } \frac{b}{t}>1.40 \cdot \sqrt{\frac{E}{F_{y}}} \\ & \text { "noncompact" if } 1.12 \cdot \sqrt{\frac{E}{F_{y}}} \leq \frac{b}{t} \leq 1.40 \cdot \sqrt{\frac{E}{F_{y}}}\end{aligned} \quad=$ "compact"

Yielding

$M_{p}:=F_{y} \cdot Z_{x}=4.92 \cdot \mathrm{kip} \cdot \mathrm{ft}$
$M_{n}:=M_{p}=4.92$.kip.ft

Flange Local Buckling

$\mathrm{b}_{\mathrm{e}}:=\min \left[1.92 \cdot \mathrm{t} \cdot \sqrt{\frac{\mathrm{E}}{F_{y}}} \cdot\left(1-\frac{0.38}{\frac{b}{t}} \cdot \sqrt{\frac{E}{F_{y}}}\right), \mathrm{b}\right]=2.32 \cdot$ in
$I_{\text {eff }}:=I_{X}-2 \cdot\left[\left(b-b_{e}\right) \cdot t \cdot\left(B_{f}-t\right)^{2}+\frac{\left(b-b_{e}\right) \cdot t^{3}}{12}\right]=2.03 \cdot$ in 4
$\mathrm{S}_{\mathrm{e}}:=\frac{\text { Ieff }}{\frac{\mathrm{H}_{\mathrm{w}}}{2}}=1.36 \cdot \mathrm{in}^{3}$
$M_{n _f i b}:=\left\{\begin{array}{l}\min \left[M_{p}-\left(M_{p}-F_{y} \cdot S_{x}\right) \cdot\left(3.57 \cdot \frac{b}{t} \cdot \sqrt{\frac{F_{y}}{E}}-4.0\right), M_{p}\right] \text { if Slenderness = "noncompact" }=4.92 \cdot \mathrm{kip} \cdot \mathrm{ft} \\ F_{y} \cdot S_{e} \text { if Slenderness = "slender"" } \\ M_{n} \text { if Slenderness = "compact" }\end{array}\right.$

Web Local Buckling

$$
\begin{aligned}
& M_{n _w l b}:=\left\{\begin{array}{l}
\min \left[M_{p}-\left(M_{p}-F_{y} \cdot S_{x}\right) \cdot\left(0.305 \cdot \frac{h}{t} \cdot \sqrt{\frac{F_{y}}{E}}-0.738\right), M_{p}\right] \text { if Slenderness }=\text { "noncompact" }=4.92 \cdot \mathrm{kip} \cdot \mathrm{ft} \\
M_{n} \text { if Slenderness }=\text { "compact" }
\end{array}\right. \\
& M_{n}:=\min \left(M_{n}, M_{n _} _ \text {flb }, M_{n _w l b}\right)=4.92 \cdot \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

SUBJECT: Portland Loo - Somerville SHEET NO. 321
Structural Calculations PROJECT NO. 21230893.000

Check Shear Wall 1

Roof Load:	$T L_{\text {max }}=53 . \mathrm{psf}$	*conservatively use $\mathrm{TL}_{\text {max }}$ - may be negative load
Beam Reaction to Column:	$\mathrm{R}_{\max }=0.41 \cdot \mathrm{kip}$	*conservatively use $\mathrm{R}_{\max }$ - may be negative load
Shear Load to Shear Wall 1:	$\mathrm{V}_{\text {SW } 1}=0.52 \cdot \mathrm{kip}$	
Width of Shear Wall 1:	$\mathrm{W}_{\text {SW }} 1=5.5 \mathrm{ft}$	
Reaction due to Shear Couple:	$\mathrm{R}_{\text {shear }}:=\frac{\mathrm{V}_{\mathrm{SW} 1} \cdot \mathrm{H}}{\mathrm{~W}_{\mathrm{SW} 1}}$	83.kip

Check Stress

Axial Load: $\quad P_{\text {max }}:=R_{\max }+R_{\text {shear }}=1.23$. kip
$\frac{P_{\max } \cdot \Omega_{\mathrm{C}}}{\mathrm{P}_{\mathrm{n}}}=0.07<1.00 \mathrm{OK}$

Moment Due to Cantilever: $\quad \mathrm{M}_{\text {cant }}:=\frac{\mathrm{V}_{\mathrm{SW}} 1 \cdot \mathrm{H}_{\text {cant }}}{2}=0.71 \cdot \mathrm{kip} \cdot \mathrm{ft}$
$\frac{M_{\text {cant }} \cdot \Omega_{\mathrm{b}}}{\mathrm{M}_{\mathrm{n}}}=0.24<1.00 \mathrm{OK}$
Combined Stress:
UNITY $:=\left\lvert\, \begin{aligned} & \frac{P_{\text {max }} \cdot \Omega_{\mathrm{c}}}{P_{n}}+\frac{8}{9} \cdot \frac{M_{\text {cant }} \cdot \Omega_{b}}{M_{n}} \text { if } \frac{P_{\max } \cdot \Omega_{c}}{P_{n}} \geq 0.2=0.28 \\ & \frac{P_{\text {max }} \cdot \Omega_{c}}{2 \cdot P_{n}}+\frac{M_{\text {cant }} \cdot \Omega_{b}}{M_{n}} \text { if } \frac{P_{\max } \cdot \Omega_{c}}{P_{n}}<0.2\end{aligned} \quad<1.00\right.$ OK

Check Shear Walls 2 \& 3

Roof Load:	TLmax $=53 \cdot \mathrm{psf}$	*conservatively use $T L_{\text {max }}$ - may be negative load
Beam Reaction to Column:	$\mathrm{R}_{\max }=0.41 \cdot \mathrm{kip} \quad$ *conservatively use $\mathrm{R}_{\max }$ - may be negative load	
Shear Load to Shear Wall 2:	$\mathrm{V}_{\mathrm{SW}}=0.26 \cdot \mathrm{kip}$	
Width of Shear Wall 2:	$\mathrm{WSW2}=7 \mathrm{ft}$	
Reaction due to Shear Couple:	$\mathrm{R}_{\text {Shear }}:=\frac{\mathrm{V}_{\mathrm{SW} 2} \cdot \mathrm{H}}{\mathrm{W}_{\mathrm{SW} 2}}=0.32 \cdot \mathrm{kip}$	

Check Stress

Axial Load: $\quad P_{\max }:=R_{\max }+R_{\text {shear }}=0.73$. kip
$\frac{P_{\max } \cdot \Omega_{\mathrm{C}}}{\mathrm{P}_{\mathrm{n}}}=0.04<1.00 \mathrm{OK}$
Moment Due to Cantilever: $\quad M_{\text {cant }}:=\frac{V_{\text {SW } 1} \cdot H_{\text {cant }}}{2}=0.71 \cdot \mathrm{kip} \cdot \mathrm{ft}$
$\frac{M_{\text {cant }} \cdot \Omega_{\mathrm{b}}}{\mathrm{M}_{\mathrm{n}}}=0.24 \quad<1.00 \mathrm{OK}$
Combined Stress:
UNITY $:=\left\lvert\, \begin{aligned} & \frac{P_{\text {max }} \cdot \Omega_{\mathrm{C}}}{P_{n}}+\frac{8}{9} \cdot \frac{M_{\text {cant }} \cdot \Omega_{b}}{M_{n}} \text { if } \frac{P_{\max } \cdot \Omega_{\mathrm{c}}}{P_{n}} \geq 0.2=0.26 \\ & \frac{P_{\text {max }} \cdot \Omega_{\mathrm{c}}}{2 \cdot P_{n}}+\frac{M_{\text {cant }} \cdot \Omega_{b}}{M_{n}} \text { if } \frac{P_{\text {max }} \cdot \Omega_{\mathrm{c}}}{P_{n}}<0.2\end{aligned} \quad<1.00\right.$ OK

LATERAL DESIGN: STEEL POST ANCHORAGE

Seismic Overstrength Factor:	$\Omega_{0}:=2.5$	*total base shear over 2 posts (conservative)
Maximum Post Shear:	$\mathrm{V}_{\text {post }}:=\max \left(\frac{\mathrm{V}_{\mathrm{W}}}{2}, \frac{\Omega_{0} \cdot \mathrm{~V}_{\mathrm{E}}}{2}\right)=0.5 \cdot \mathrm{kip}$	
Maximum Uplift Force:	$P_{\text {uplift }}:=\max \left[\frac{\Omega_{0} \cdot \mathrm{~V}_{\text {roof }} \cdot \mathrm{H}}{\mathrm{W}_{\mathrm{SW} 1}}, \frac{\Omega_{0} \cdot \mathrm{~V}_{\text {roof }} \cdot \mathrm{H}}{\mathrm{W}_{\mathrm{SW} 2}}, \frac{\left(\mathrm{~V}_{\mathrm{WS}}\right) \cdot \mathrm{H}}{\mathrm{W}_{\mathrm{SW} 1}}+\frac{\text { proofend }^{\mathrm{L} \cdot \mathrm{W}}}{11}, \frac{\left(\mathrm{~V}_{\mathrm{WL}}\right) \cdot \mathrm{H}}{\mathrm{W}_{\mathrm{SW} 2}}+\frac{\text { proofend }^{\mathrm{L} \cdot \mathrm{W}}}{11}\right]=0.75 \cdot \mathrm{kip}$	

Resisting Force:

Resultant Load:

Check Plate

Plate Thickness:
Plate Width:
Plate Yield Strength:
Plastic Modulus of Plate:
Safety Factor:
Maximum Moment on Plate:
Allowable Moment on Plate:
$\frac{\text { Mplate }}{M_{\text {allow }}}=0.07 \quad<1.00$ OK

Check Weld

Weld Thickness:	$\mathrm{t}_{\mathrm{W}}:=0.1875 \mathrm{in}$
Filler Metal Strength:	$\mathrm{F}_{\mathrm{EXX}}:=70 \mathrm{ksi}$
Safety Factor:	$\Omega_{\mathrm{W}}:=2.70$
Weld Width:	$\mathrm{b}_{\mathrm{w}}:=\mathrm{w}_{\text {plate }}=3 \cdot \mathrm{in}$
Weld Height:	$\mathrm{d}_{\mathrm{w}}:=\mathrm{w}_{\text {plate }}=3 \cdot \mathrm{in}$
Total Weld Length:	$\mathrm{A}_{\mathrm{w}}:=2 \cdot \mathrm{~b}_{\mathrm{w}}+2 \cdot \mathrm{~d}_{\mathrm{w}}=12 \cdot \mathrm{in}$
Vertical Load on Weld:	$\mathrm{V}_{\text {vert }}:=\frac{\mathrm{P}_{\text {lift }}}{A_{\mathrm{w}}}=0.17 \cdot \frac{\mathrm{kip}}{\mathrm{in}}$
Horizontal Load on Weld:	$\mathrm{V}_{\text {hor }}:=\frac{\mathrm{V}_{\text {post }}}{\mathrm{A}_{\mathrm{w}}}=0.05 \cdot \frac{\mathrm{kip}}{\mathrm{in}}$
Resultant Load on Weld:	$\mathrm{V}_{\text {weld }}:=\sqrt{\mathrm{V}_{\text {vert }}{ }^{2}+\mathrm{V}_{\text {hor }}{ }^{2}}=0.18 \cdot \frac{\mathrm{kip}}{\mathrm{in}}$
Allowable Weld Strength:	$\mathrm{V}_{\text {allow }}:=\frac{0.6 \cdot \mathrm{~F}_{\mathrm{EXX}} \cdot 0.707 \cdot \mathrm{t}_{\mathrm{w}}}{\Omega_{\mathrm{W}}}=2.06 \cdot \frac{\mathrm{kip}}{\mathrm{in}}$

tplate $:=0.5$ in
$\mathrm{w}_{\text {plate }}:=3$ in
Fy_plate : = 30ksi
$Z_{\text {plate }}:=\frac{\text { tplate }^{2} \cdot w_{\text {plate }}}{4}=0.19 \cdot$ in 3
$\Omega_{\mathrm{b}}:=1.67$
$M_{\text {plate }}:=\frac{P_{\text {net }} \cdot W_{\text {plate }}}{4}=0.22 \cdot$ kip \cdot in

$M_{\text {allow }}:=\frac{\text { Fy_plate } \cdot \text { Zplate }}{\Omega_{\mathrm{b}}}=3.37 \cdot \mathrm{kip} \cdot$ in
$\frac{M_{\text {plate }}}{M_{\text {allow }}}=0.07<1.00 \mathrm{OK}$

$$
\frac{V_{\text {weld }}}{V_{\text {allow }}}=0.09 \quad<1.00 \mathrm{OK}
$$

SUBJECT: Portland Loo - Somerville
Structural Calculations Madden Fabrication SHEET NO. 324

Check Bolt

heck Bolt	HSS $21 / 2 \times 2$ $\times 3 / 16^{\prime \prime}$ (BEVE
Allowable Shear Stress (316SS):	$\mathrm{F}_{\mathrm{V}}:=12.99 \mathrm{ksi}$
Nominal Bolt Diameter:	$\mathrm{d}:=0.5 \mathrm{in}$
Thread Root Area:	$A_{R}:=0.1292 \mathrm{in}^{2}$ F.F.
Tensile Strength of HSS:	FuHSS := 58ksi
	$F_{u}:=F_{u H S S}=58 . \mathrm{ksi}$
HSS Wall Thickness:	$\mathrm{t}=0.174$. n
Maximum Bolt Shear:	$\mathrm{V}_{\text {max }}:=\frac{\mathrm{P}_{\text {net }}}{2}=148 . \mathrm{lbf} \quad$ *two shear planes
Clear Distance to Plate Edge:	$\mathrm{I}_{\mathrm{c}}:=0.75 \mathrm{in}-\frac{(\mathrm{d}+0.0625 \mathrm{in})}{2}=0.47 \cdot \mathrm{in}$
Safety Factor:	$\Omega_{\text {brg }}:=2.0$
Bearing Strength:	$\mathrm{V}_{\mathrm{brg}}:=\min \left(\frac{1.2 \cdot \mathrm{l} \cdot \mathrm{t} \cdot \mathrm{F}_{\mathrm{u}}}{\Omega_{\mathrm{brg}}}, \frac{2.4 \cdot \mathrm{~d} \cdot \mathrm{t} \cdot \mathrm{F}_{\mathrm{u}}}{\Omega_{\mathrm{brg}}}\right)=2838 \cdot \mathrm{lbf}$
Bolt Strength:	$\mathrm{V}_{\text {bolt }}:=\mathrm{F}_{\mathrm{V}} \cdot A_{\mathrm{R}}=1678.31 \cdot \mathrm{lbf}$
	Vallow $:=\min \left(\mathrm{V}_{\text {brg }}, \mathrm{V}_{\text {bolt }}\right)=1678.31$.lbf
$\frac{V_{\text {max }}}{V_{\text {allow }}}=0.09 \quad<1.00 \mathrm{OK}$	

Check Anchorage to Foundation

Base Shear per Post:
$V_{\text {post }}=0.54-\mathrm{kip}$
$V_{\text {anchor }}:=1.428 \cdot V_{\text {post }}=0.78 \cdot \mathrm{kip} \quad *_{\text {convert }}$ to LRFD load
Net Uplift per Post:
$P_{\text {net }}=0.3 \cdot \mathrm{kip}$
$T_{\text {anchor }}:=1.6 \cdot P_{\text {net }}=0.47 \cdot$ kip \quad *convert to LRFD load
$1 / 2^{"}$ thick stainless steel plate with HSS2 $1 / 2 \times 21 / 2 \times 3 / 16$ is adequate.
Use $3 / 16^{\prime \prime}$ fillet weld all-around for HSS connection to plate.
Use 1/2" diameter bolt for post connection to hold downs.
Bolts to be 316 stainless steel, condition "A" ($F_{\underline{u}}=75 \mathrm{ksi}$ minimum).
Use 1/2" Titen HD (4" embedment) to slab. See Simpson Anchor Designer output for analysis.

LATERAL DESIGN: STEEL PLATE SHEAR WALL

Geometry
Height of Shear Wall:
Height of Steel Sheet Portion:
Width of Shear Wall 1:
Width of Shear Walls $2 \& 3$:

Load Distribution

Shear Wall 1:
Shear Walls 2 \& 3:

Angles of Inclination of Load(s):

Resultant Tension in
Tension Field:
Plate Thickness:

Plate Yield Stress:

Minimum Tension Field Width:

Section Modulus of Plate at Bend:

Allowable Moment at Plate Connection to Post:

Weak Axis Moment at Plate Connection to Post:
$\mathrm{H}=8.73 \mathrm{ft}$
$H_{\text {steel }}=6 \mathrm{ft}$
$\mathrm{W}_{\mathrm{SW} 1}=5.5 \mathrm{ft}$
$W_{S W}=7 \mathrm{ft}$

$$
t_{p l}:=0.1875 i n
$$

$$
F_{y}=30 \cdot \mathrm{ksi}
$$

$w_{\text {strap }}:=\frac{T_{\text {strap }}}{\left(\frac{t_{p l} \cdot F_{y}}{1.67}\right)}=0.29$ in
Splate $:=\frac{\mathrm{tpl}^{2} \cdot 11 \mathrm{in}}{6}=0.06 \cdot \mathrm{in}^{3}$
Mall_plate $:=\frac{\text { Fy } \cdot \text { Splate }}{1.67}=1.16 \cdot \mathrm{kip} \cdot \mathrm{in}$
$M_{\text {pl_w }}:=\max \left(V_{S W} 1, V_{S W}\right) \cdot 1 \mathrm{in}=0.52 \cdot \mathrm{kip} \cdot \mathrm{in}$

$$
\frac{\text { Mpl_w }}{\text { Mall_plate }}=0.45<1.00 \text { OK }
$$

3/16" stainless steel plate is adequate for wall panels for in plane loading

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{SW} 1}=0.52 \cdot \mathrm{kip} \\
& \text { VSW2 }=0.26 \text {.kip } \\
& { }^{\text {SSW }} 1:=\operatorname{atan}\left(\frac{\mathrm{H}}{\mathrm{~W}_{\mathrm{SW}}}\right)=57.8 \cdot \mathrm{deg} \\
& \theta_{\text {SW2 }}:=\operatorname{atan}\left(\frac{H_{\text {steel }}}{1.33 \mathrm{ft}}\right)=77.5 \cdot \mathrm{deg} \quad \text { *narrowest panel, SW2/3 } \\
& \theta \text { SW3 }:=\operatorname{atan}\left(\frac{H_{\text {steel }}}{2.92 \mathrm{ft}}\right)=64.05 \cdot \mathrm{deg} \quad \text { wwidest panel, SW2/3 } \\
& T_{\text {strap }}:=\max \left[\frac{\mathrm{V}_{\mathrm{SW} 1}}{\cos \left(\theta_{\mathrm{SW} 1}\right)}, \frac{\mathrm{V}_{\mathrm{SW} 2} \cdot\left(\frac{1.33 \mathrm{ft}}{\mathrm{~W}_{\mathrm{SW} 2}}\right)}{\cos \left(\theta_{\mathrm{SW} 2}\right)}, \frac{\mathrm{V}_{\mathrm{SW} 2} \cdot\left(\frac{2.92 \mathrm{ft}}{\mathrm{~W}_{\mathrm{SW} 2}}\right)}{\cos \left(\theta_{\mathrm{SW}}\right)}\right]=0.98 \cdot \mathrm{kip}
\end{aligned}
$$

SUBJECT: Portland Loo - Somerville Structural Calculations SHEET NO. 326

Madden Fabrication

LATERAL DESIGN: STEEL PLATE SHEAR WALL (continued)

(3) $3 / 8^{\prime \prime}$ diameter fasteners are adequate for shear wall connection to posts. Fasteners to be 316 stainless steel, condition " A " $\left(F_{\underline{u}}=75 \mathrm{ksi}\right.$ minimum).

FOUNDATION DESIGN:

Geometry

Width of Foudnation:
Length of Foundation

$$
\begin{aligned}
& \mathrm{W}_{\text {found }}:=6 \mathrm{ft}+8 \mathrm{in} \\
& \text { Lfound }:=11 \mathrm{ft}
\end{aligned}
$$

Length of Foundation:

Depth of Foundation
dfound:=18in
Density of Concrete:
$\gamma_{\text {conc }}:=150$ pcf
Total Area of Foundation
Afound $:=W_{\text {found }} \cdot L$ Lfound $=73.33 \cdot \mathrm{ft}^{2}$
Volume of Foundation: $\quad V_{\text {found }}:=A_{\text {found }} \cdot \mathrm{d}_{\text {found }}=110 \cdot \mathrm{ft}^{3}$
Total Weight of Foundation:
Wtfound $:=V_{\text {found }} \cdot \gamma_{\text {conc }}=16.5 \cdot \mathrm{kip}$
Allowable Soil Bearing:
Qallow $=1500 \cdot$ psf

Check Bearing

Bearing Pressure on Soil:

$$
\mathrm{w}_{\text {brg }}:=\frac{\mathrm{T} \mathrm{~L}_{\text {pos }} \cdot \mathrm{L} \cdot \mathrm{~W}+\text { Weight }+ \text { Wtfound }}{\text { Afound }}=387.65 \cdot \mathrm{psf}
$$

$$
\frac{w_{\text {brg }}}{\text { Qallow }}=0.26<1.00 \mathrm{OK}
$$

*conservatively combine load on roof plate with structure weight and foundation weight

Check Uplift

Maximum Net Uplift: $\quad w_{\text {uplift }}:=0.6 \cdot$ Weight - TLneg.L.W $=3268.51$ Ibf

Check Overturning

Maximum Shear Wall Net Uplift: \quad Pnet $=0.3 \cdot$ kip
$\begin{array}{ll}M_{\text {over }}:=P_{\text {net }} \cdot \max \left(\text { Lfound }, W_{\text {found }}\right)=3.25 \cdot \mathrm{kip} \cdot \mathrm{ft} & \text { *apply uplift at edge } \\ M_{\text {resist }}:=.6 \text { Wtfound } \cdot \frac{\mathrm{W}_{\text {found }}}{2}=33 \cdot \mathrm{kip} \cdot \mathrm{ft} & \text { *apply resisting load at } 1 / 2 \text { distance of overturning load }\end{array}$
$\frac{M_{\text {over }}}{M_{\text {resist }}}=0.1<1.00 \mathrm{OK}$
1'-6" concrete foundation is adequate to support the structure.
Per IBC 2015 Sec. 1809.5 no frost protection required.

SIMPSON Anchor Designer ${ }^{\text {TM }}$
 Strong4tie
 Software
 Version 3.0.7947.0

Company:		Date:	$8 / 1 / 2022$
Engineer:		Page:	$1 / 5$
Project:			
Address:			
Phone:			
E-mail:			

1.Project information

Customer company:
Customer contact name:
Customer e-mail:
Comment:

2. Input Data \& Anchor Parameters

General

Design method:ACI 318-14
Units: Imperial units

Anchor Information:

Anchor type: Concrete screw
Material: Carbon Steel
Diameter (inch): 0.500
Nominal Embedment depth (inch): 4.000
Effective Embedment depth, hef (inch): 2.990
Code report: ICC-ES ESR-2713
Anchor category: 1
Anchor ductility: No
$\mathrm{h}_{\text {min }}$ (inch): 6.25
Cac (inch): 4.50
$\mathrm{C}_{\text {min }}$ (inch): 1.75
$\mathrm{S}_{\text {min }}$ (inch): 3.00

Recommended Anchor

Anchor Name: Titen HD® - 1/2"Ø Titen HD, hnom:4" (102mm)
Code Report: ICC-ES ESR-2713

Project description:
Location:
Fastening description:

Base Material

Concrete: Normal-weight
Concrete thickness, h (inch): 30.00
State: Cracked
Compressive strength, f_{c} (psi): 4000
$\psi_{\mathrm{c}, \mathrm{V}:} 1.0$
Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable Build-up grout pad: No

SIMPSON Anchor Designer ${ }^{\text {TM }}$
Strong4tie
Software
Version 3.0.7947.0

Company:		Date:	$8 / 1 / 2022$
Engineer:		Page:	$2 / 5$
Project:			
Address:			
Phone:			
E-mail:			

Load and Geometry

Load factor source: ACI 318 Section 5.3
Load combination: not set
Seismic design: Yes
Anchors subjected to sustained tension: Not applicable
Ductility section for tension: 17.2.3.4.3 (d) is satisfied
Ductility section for shear: 17.2.3.5.3 (c) is satisfied
Ω_{0} factor: not set
Apply entire shear load at front row: No
Anchors only resisting wind and/or seismic loads: No
Strength level loads:
Nua [lb]: 470
Vaxa [lb]: 0
Vuay [lb]: 780
<Figure 1>

Company:		Date:	$8 / 1 / 2022$
Engineer:		Page:	$3 / 5$
Project:			
Address:			
Phone:			
E-mail:			

<Figure 2>

Company:		Date:	$8 / 1 / 2022$
Engineer:		Page:	$4 / 5$
Project:			
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, $N_{\text {ua }}(\mathrm{lb})$	Shear load x, $V_{\text {uax }}(\mathrm{lb})$	Shear load y, $\mathrm{V}_{\text {uay }}(\mathrm{lb})$	Shear load combined, $V\left(\mathrm{~V}_{\text {uax }}\right)^{2}+\left(\mathrm{V}_{\text {uay }}\right)^{2}(\mathrm{lb})$
1	470.0	0.0	780.0	780.0
Sum	470.0	0.0	780.0	780.0

Maximum concrete compression strain (\%o): 0.00
Maximum concrete compression stress (psi): 0
Resultant tension force (lb): 470
Resultant compression force (lb): 0
Eccentricity of resultant tension forces in x -axis, $\mathrm{e}^{\prime} \mathrm{Nx}$ (inch): 0.00
Eccentricity of resultant tension forces in y -axis, e'ny (inch): 0.00
Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00
Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension (Sec. 17.4.1)

$N_{\text {sa }}$ (lb)	ϕ	$\phi N_{\text {sa }}$ (lb)
20130	0.65	13085

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.4.2)

$N_{b}=k_{c} \lambda_{a} \sqrt{ } f_{c} h_{e f} h^{1.5}$ (Eq. 17.4.2.2a)

k_{c}	λ_{a}	$f_{c}^{\prime}(\mathrm{psi})$	$h_{\text {ef }}$ (in)	$N_{b}(\mathrm{lb})$
17.0	1.00	4000	2.990	5559

$0.75 \phi N_{c b}=0.75 \phi\left(A_{N c} / A_{N c o}\right) \Psi_{e d, N} \Psi_{c, N} \Psi_{c p, N} N_{b}$ (Sec. 17.3.1 \& Eq. 17.4.2.1a)

$A_{N c}\left(\mathrm{in}^{2}\right)$	$A_{N c o}\left(\mathrm{in}^{2}\right.$	$C_{a, \min }(\mathrm{in})$	$\Psi_{e d, N}$	$\Psi_{c, N}$	$\Psi_{c p, N}$	$N_{b}(\mathrm{lb})$	ϕ	$0.75 \phi N_{c b}(\mathrm{lb})$
80.46	80.46	8.00	1.000	1.00	1.000	5559	0.65	2710

8. Steel Strength of Anchor in Shear (Sec. 17.5.1)

$V_{s a}($ Ib $)$	$\phi_{\text {grout }}$	ϕ	$\phi_{\text {grout }} \phi V_{\text {sa }}$ (Ib)
4790	1.0	0.60	2874

9. Concrete Breakout Strength of Anchor in Shear (Sec. 17.5.2)

Shear perpendicular to edge in y-direction:

$V_{b y}=\min \left|7\left(I_{e} / d_{a}\right)^{0.2}{ }_{d_{a}} \lambda_{a} \sqrt{ } f_{c} c_{a}{ }_{a}{ }^{1.5} ; 9 \lambda_{a} \sqrt{ } f_{c} c_{a 1}{ }^{1.5}\right|$ (Eq. 17.5.2.2a \& Eq. 17.5.2.2b)

$l_{e}(\mathrm{in})$	$d_{a}(\mathrm{in})$	λ_{a}	$f_{c}^{\prime}(\mathrm{psi})$	$C_{a 1}$ (in)	$V_{b y}(\mathrm{lb})$
2.99	0.500	1.00	4000	8.00	10130

$\phi V_{c b y}=\phi\left(A v_{c} / A v_{c o}\right) \Psi_{e d, v} \Psi_{c, v} \Psi_{h, V} V_{b y}($ Sec. 17.3.1 \& Eq. 17.5.2.1a)

$A_{v c}\left(\mathrm{in}^{2}\right)$	$A_{v c o}\left(\mathrm{in}^{2}\right)$	$\Psi_{e d, V}$	$\Psi_{c, V}$	$\Psi_{h, V}$	$V_{b y}(\mathrm{lb})$	ϕ	$\phi V_{c b y}(\mathrm{lb})$
192.00	288.00	0.900	1.000	1.000	10130	0.70	4254

Shear parallel to edge in x-direction:

l_{e} (in)	d_{a} (in)	λ_{a}	f_{c}^{\prime} (psi)	$C_{a 1}$ (in)	$V_{\text {by }}$ (lb)

10. Concrete Pryout Strength of Anchor in Shear (Sec. 17.5.3)

$\phi V_{c p}=\phi k_{c p} N_{c b}=\phi k_{c p}\left(A_{N c} / A_{N c o}\right) \Psi_{e d, N} \Psi_{c, N} \Psi_{c p, N} N_{b}$ (Sec. 17.3.1 \& Eq. 17.5.3.1a)								
$k_{c p}$	$A_{N c}\left(\mathrm{in}^{2}\right)$	$A_{N c o}\left(\mathrm{in}^{2}\right)$	$\Psi_{e d, N}$	$\Psi_{c, N}$	$\Psi_{c p, N}$	$N_{b}(\mathrm{lb})$	ϕ	$\phi V_{c p}(\mathrm{lb})$
2.0	80.46	80.46	1.000	1.000	1.000	5559	0.70	7782

11. Results

Interaction of Tensile and Shear Forces (Sec. 17.6.)

1/2"Ø Titen HD, hnom:4" (102mm) meets the selected design criteria.

12. Warnings

- Per designer input, ductility requirements for tension have been determined to be satisfied - designer to verify.
- Per designer input, ductility requirements for shear have been determined to be satisfied - designer to verify.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

